Question Number 67819 by ajfour last updated on 31/Aug/19 | ||
$${y}={x}^{\mathrm{5}} +{ax}^{\mathrm{4}} +{bx}^{\mathrm{3}} +{cx}^{\mathrm{2}} +{dx}+{e} \\ $$$${If}\:{we}\:{let}\:{x}={t}+{h} \\ $$$${can}\:{we}\:{find}\:{h}\:{in}\:{terms}\:{of}\:{a},{b},{c},{d},{e} \\ $$$${such}\:{that} \\ $$$${y}=\left({t}+{R}\right)\left({t}^{\mathrm{2}} +{pt}+{q}\right)\left({t}^{\mathrm{2}} +{s}\right) \\ $$$${this}\:{means}\:{two}\:{roots}\:{are}\:{of} \\ $$$${opposite}\:{sign},\:{of}\:{course}\:{its} \\ $$$${possible}\:{by}\:{shifting}\:{the}\:{curve} \\ $$$${along}\:{x},\:{but}\:{can}\:{we}\:{find}\:{the} \\ $$$${shift}\:\boldsymbol{{h}}\:? \\ $$ | ||
Commented by TawaTawa last updated on 31/Aug/19 | ||
$$\mathrm{Weldone}\:\mathrm{sir}\:\mathrm{on}\:\mathrm{the}\:\mathrm{evetyday}\:\mathrm{trial}.\:\mathrm{It}\:\mathrm{will}\:\mathrm{be}\:\mathrm{fruitful}\:\mathrm{sir}.\: \\ $$$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$ | ||