Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 67615 by TawaTawa last updated on 29/Aug/19

Commented by TawaTawa last updated on 29/Aug/19

i did.      A of Big semi circle = ((πr^2 )/2)  =  ((π.2^2 )/2)  =  2π  A of second big semicircle  =  ((πr^2 )/2)  =  (1/2)π  But i don′t know what to do again

$$\mathrm{i}\:\mathrm{did}.\:\:\:\:\:\:\mathrm{A}\:\mathrm{of}\:\mathrm{Big}\:\mathrm{semi}\:\mathrm{circle}\:=\:\frac{\pi\mathrm{r}^{\mathrm{2}} }{\mathrm{2}}\:\:=\:\:\frac{\pi.\mathrm{2}^{\mathrm{2}} }{\mathrm{2}}\:\:=\:\:\mathrm{2}\pi \\ $$$$\mathrm{A}\:\mathrm{of}\:\mathrm{second}\:\mathrm{big}\:\mathrm{semicircle}\:\:=\:\:\frac{\pi\mathrm{r}^{\mathrm{2}} }{\mathrm{2}}\:\:=\:\:\frac{\mathrm{1}}{\mathrm{2}}\pi \\ $$$$\mathrm{But}\:\mathrm{i}\:\mathrm{don}'\mathrm{t}\:\mathrm{know}\:\mathrm{what}\:\mathrm{to}\:\mathrm{do}\:\mathrm{again} \\ $$

Answered by mr W last updated on 29/Aug/19

Commented by mr W last updated on 29/Aug/19

radius of big semi circle=R=a  radius of small circles=r=(a/2)  α=(π/3)  β=((2π)/3)  AD=2R=2a  BC=r=(a/2)  A_(ABCD) =(((a/2)+2a)/2)×(a/2)×((√3)/2)=((5(√3)a^2 )/(16))  A_(AB^(⌢) ) =A_(CD^(⌢) ) =(r^2 /2)(β−sin β)=(a^2 /8)(((2π)/3)−((√3)/2))  A_(BC^(⌢) ) =(r^2 /2)(α−sin α)=(a^2 /8)((π/3)−((√3)/2))  A_(shade) =((πR^2 )/2)−A_(ABCD) −2×A_(AB^(⌢) ) −A_(BC^(⌢) )   =((πa^2 )/2)−((5(√3)a^2 )/(16))−2×(a^2 /8)(((2π)/3)−((√3)/2))−(a^2 /8)((π/3)−((√3)/2))  =(a^2 /8)(((7π)/3)−(√3))  =((a^2 (7π−3(√3)))/(24))

$${radius}\:{of}\:{big}\:{semi}\:{circle}={R}={a} \\ $$$${radius}\:{of}\:{small}\:{circles}={r}=\frac{{a}}{\mathrm{2}} \\ $$$$\alpha=\frac{\pi}{\mathrm{3}} \\ $$$$\beta=\frac{\mathrm{2}\pi}{\mathrm{3}} \\ $$$${AD}=\mathrm{2}{R}=\mathrm{2}{a} \\ $$$${BC}={r}=\frac{{a}}{\mathrm{2}} \\ $$$${A}_{{ABCD}} =\frac{\frac{{a}}{\mathrm{2}}+\mathrm{2}{a}}{\mathrm{2}}×\frac{{a}}{\mathrm{2}}×\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}=\frac{\mathrm{5}\sqrt{\mathrm{3}}{a}^{\mathrm{2}} }{\mathrm{16}} \\ $$$${A}_{\overset{\frown} {{AB}}} ={A}_{\overset{\frown} {{CD}}} =\frac{{r}^{\mathrm{2}} }{\mathrm{2}}\left(\beta−\mathrm{sin}\:\beta\right)=\frac{{a}^{\mathrm{2}} }{\mathrm{8}}\left(\frac{\mathrm{2}\pi}{\mathrm{3}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right) \\ $$$${A}_{\overset{\frown} {{BC}}} =\frac{{r}^{\mathrm{2}} }{\mathrm{2}}\left(\alpha−\mathrm{sin}\:\alpha\right)=\frac{{a}^{\mathrm{2}} }{\mathrm{8}}\left(\frac{\pi}{\mathrm{3}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right) \\ $$$${A}_{{shade}} =\frac{\pi{R}^{\mathrm{2}} }{\mathrm{2}}−{A}_{{ABCD}} −\mathrm{2}×{A}_{\overset{\frown} {{AB}}} −{A}_{\overset{\frown} {{BC}}} \\ $$$$=\frac{\pi{a}^{\mathrm{2}} }{\mathrm{2}}−\frac{\mathrm{5}\sqrt{\mathrm{3}}{a}^{\mathrm{2}} }{\mathrm{16}}−\mathrm{2}×\frac{{a}^{\mathrm{2}} }{\mathrm{8}}\left(\frac{\mathrm{2}\pi}{\mathrm{3}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)−\frac{{a}^{\mathrm{2}} }{\mathrm{8}}\left(\frac{\pi}{\mathrm{3}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right) \\ $$$$=\frac{{a}^{\mathrm{2}} }{\mathrm{8}}\left(\frac{\mathrm{7}\pi}{\mathrm{3}}−\sqrt{\mathrm{3}}\right) \\ $$$$=\frac{{a}^{\mathrm{2}} \left(\mathrm{7}\pi−\mathrm{3}\sqrt{\mathrm{3}}\right)}{\mathrm{24}} \\ $$

Commented by TawaTawa last updated on 29/Aug/19

Wow, God bless you sir.

$$\mathrm{Wow},\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Answered by mr W last updated on 29/Aug/19

Commented by mr W last updated on 29/Aug/19

A_1 =∫_0 ^(π/3) (1/2)(a^2 −a^2 cos^2  θ)dθ  =(a^2 /2)∫_0 ^(π/3) sin^2  θdθ  =(a^2 /4)∫_0 ^(π/3) (1−cos 2θ)dθ  =(a^2 /4)[θ−((sin 2θ)/2)]_0 ^(π/3)   =(a^2 /4)((π/3)−((√3)/4))  A_2 =(1/2)×(π/6)×(a^2 −(a^2 /4))=((a^2 π)/(16))    A_(shaded) =2(A_1 +A_2 )  =(a^2 /2)((π/3)−((√3)/4))+((πa^2 )/8)  =((a^2 (7π−3(√3)))/(24))

$${A}_{\mathrm{1}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{3}}} \frac{\mathrm{1}}{\mathrm{2}}\left({a}^{\mathrm{2}} −{a}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta\right){d}\theta \\ $$$$=\frac{{a}^{\mathrm{2}} }{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{3}}} \mathrm{sin}^{\mathrm{2}} \:\theta{d}\theta \\ $$$$=\frac{{a}^{\mathrm{2}} }{\mathrm{4}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{3}}} \left(\mathrm{1}−\mathrm{cos}\:\mathrm{2}\theta\right){d}\theta \\ $$$$=\frac{{a}^{\mathrm{2}} }{\mathrm{4}}\left[\theta−\frac{\mathrm{sin}\:\mathrm{2}\theta}{\mathrm{2}}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{3}}} \\ $$$$=\frac{{a}^{\mathrm{2}} }{\mathrm{4}}\left(\frac{\pi}{\mathrm{3}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}\right) \\ $$$${A}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}×\frac{\pi}{\mathrm{6}}×\left({a}^{\mathrm{2}} −\frac{{a}^{\mathrm{2}} }{\mathrm{4}}\right)=\frac{{a}^{\mathrm{2}} \pi}{\mathrm{16}} \\ $$$$ \\ $$$${A}_{{shaded}} =\mathrm{2}\left({A}_{\mathrm{1}} +{A}_{\mathrm{2}} \right) \\ $$$$=\frac{{a}^{\mathrm{2}} }{\mathrm{2}}\left(\frac{\pi}{\mathrm{3}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}\right)+\frac{\pi{a}^{\mathrm{2}} }{\mathrm{8}} \\ $$$$=\frac{{a}^{\mathrm{2}} \left(\mathrm{7}\pi−\mathrm{3}\sqrt{\mathrm{3}}\right)}{\mathrm{24}} \\ $$

Commented by TawaTawa last updated on 29/Aug/19

I appreciate your time sir. God bless you

$$\mathrm{I}\:\mathrm{appreciate}\:\mathrm{your}\:\mathrm{time}\:\mathrm{sir}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com