Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 67531 by mathmax by abdo last updated on 28/Aug/19

prove that cos(πz) =Π_(n=1) ^∞ (1−(z^2 /(((1/2)+n)^2 )))

$${prove}\:{that}\:{cos}\left(\pi{z}\right)\:=\prod_{{n}=\mathrm{1}} ^{\infty} \left(\mathrm{1}−\frac{{z}^{\mathrm{2}} }{\left(\frac{\mathrm{1}}{\mathrm{2}}+{n}\right)^{\mathrm{2}} }\right) \\ $$

Commented by ~ À ® @ 237 ~ last updated on 29/Aug/19

    Knowing   cosx=((sin2x)/(2sinx))   cos(πz)= ((sin(2πz))/(2sin(πz)))   Now  using  sin(πz)=πzΠ_(n=1) ^∞ (1−(z^2 /n^2 ))  cos(πz)=(((2πz)Π_(n=1) ^∞ (1−(((2z)^2 )/n^2 )))/(2(πz)Π_(n=1) ^∞ (1−(z^2 /n^2 )))) =((Π_(n=1) ^∞ (1−((4z^2 )/((2n)^2 )))Π_(n=1) ^∞ (1−((4z^2 )/((2n+1)^2 ))))/(Π_(n=1) ^∞ (1−(z^2 /n^2 )))) = Π_(n=1) ^∞ (1−(z^2 /((((2n+1)/2))^2 )))

$$ \\ $$$$ \\ $$$${Knowing}\:\:\:{cosx}=\frac{{sin}\mathrm{2}{x}}{\mathrm{2}{sinx}}\: \\ $$$${cos}\left(\pi{z}\right)=\:\frac{{sin}\left(\mathrm{2}\pi{z}\right)}{\mathrm{2}{sin}\left(\pi{z}\right)}\: \\ $$$${Now}\:\:{using}\:\:{sin}\left(\pi{z}\right)=\pi{z}\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}−\frac{{z}^{\mathrm{2}} }{{n}^{\mathrm{2}} }\right) \\ $$$${cos}\left(\pi{z}\right)=\frac{\left(\mathrm{2}\pi{z}\right)\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}−\frac{\left(\mathrm{2}{z}\right)^{\mathrm{2}} }{{n}^{\mathrm{2}} }\right)}{\mathrm{2}\left(\pi{z}\right)\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}−\frac{{z}^{\mathrm{2}} }{{n}^{\mathrm{2}} }\right)}\:=\frac{\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}−\frac{\mathrm{4}{z}^{\mathrm{2}} }{\left(\mathrm{2}{n}\right)^{\mathrm{2}} }\right)\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}−\frac{\mathrm{4}{z}^{\mathrm{2}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }\right)}{\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}−\frac{{z}^{\mathrm{2}} }{{n}^{\mathrm{2}} }\right)}\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}−\frac{{z}^{\mathrm{2}} }{\left(\frac{\mathrm{2}{n}+\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} }\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com