Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 67528 by mathmax by abdo last updated on 28/Aug/19

calculate ∫_(−∞) ^(+∞)    ((1+x^3 )/(1+x^6 ))dx

$${calculate}\:\int_{−\infty} ^{+\infty} \:\:\:\frac{\mathrm{1}+{x}^{\mathrm{3}} }{\mathrm{1}+{x}^{\mathrm{6}} }{dx} \\ $$

Commented by ~ À ® @ 237 ~ last updated on 29/Aug/19

let named it K  when changing   x=−u        K=∫_(−∞) ^∞   ((1−u^3 )/(1+u^6 )) du   So  2K=∫_(−∞) ^∞ (( 2du)/(1+u^6 ))  =4∫_0 ^∞  (du/(1+u^6 ))      change  u=v^(1/6)    ⇒ du = (v^((1/6)−1) /6)dv   K=(2/6)∫_0 ^∞ ((  v^((1/6)−1) )/(1+v)) dv=(π/(3sin((π/6))))=((2π)/3)

$${let}\:{named}\:{it}\:{K} \\ $$$${when}\:{changing}\:\:\:{x}=−{u}\:\:\:\:\:\: \\ $$$${K}=\int_{−\infty} ^{\infty} \:\:\frac{\mathrm{1}−{u}^{\mathrm{3}} }{\mathrm{1}+{u}^{\mathrm{6}} }\:{du}\: \\ $$$${So}\:\:\mathrm{2}{K}=\int_{−\infty} ^{\infty} \frac{\:\mathrm{2}{du}}{\mathrm{1}+{u}^{\mathrm{6}} }\:\:=\mathrm{4}\int_{\mathrm{0}} ^{\infty} \:\frac{{du}}{\mathrm{1}+{u}^{\mathrm{6}} }\:\:\:\: \\ $$$${change}\:\:{u}={v}^{\frac{\mathrm{1}}{\mathrm{6}}} \:\:\:\Rightarrow\:{du}\:=\:\frac{{v}^{\frac{\mathrm{1}}{\mathrm{6}}−\mathrm{1}} }{\mathrm{6}}{dv}\: \\ $$$${K}=\frac{\mathrm{2}}{\mathrm{6}}\int_{\mathrm{0}} ^{\infty} \frac{\:\:{v}^{\frac{\mathrm{1}}{\mathrm{6}}−\mathrm{1}} }{\mathrm{1}+{v}}\:{dv}=\frac{\pi}{\mathrm{3}{sin}\left(\frac{\pi}{\mathrm{6}}\right)}=\frac{\mathrm{2}\pi}{\mathrm{3}}\: \\ $$

Commented by mathmax by abdo last updated on 29/Aug/19

thank you sir.

$${thank}\:{you}\:{sir}. \\ $$

Commented by mathmax by abdo last updated on 29/Aug/19

I =∫_(−∞) ^(+∞)  ((1+x^3 )/(1+x^6 ))dx ⇒ I =∫_(−∞) ^(+∞)  (dx/(1+x^6 )) +∫_(−∞) ^(+∞)  (x^3 /(1+x^6 ))dx  but ∫_(−∞) ^(+∞)  (x^3 /(1+x^6 ))dx =0  (the function is odd) ⇒I =2∫_0 ^∞ (dx/(1+x^6 ))  cha7gement x =t^(1/6)  give I =2 ∫_0 ^∞    (1/(1+t))×(1/6)t^((1/6)−1) dt  =(1/3)∫_0 ^∞    (t^((1/6)−1) /(1+t)) dt=(1/3) (π/(sin((π/6)))) =(π/(3×(1/2))) =((2π)/3) .

$${I}\:=\int_{−\infty} ^{+\infty} \:\frac{\mathrm{1}+{x}^{\mathrm{3}} }{\mathrm{1}+{x}^{\mathrm{6}} }{dx}\:\Rightarrow\:{I}\:=\int_{−\infty} ^{+\infty} \:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{6}} }\:+\int_{−\infty} ^{+\infty} \:\frac{{x}^{\mathrm{3}} }{\mathrm{1}+{x}^{\mathrm{6}} }{dx} \\ $$$${but}\:\int_{−\infty} ^{+\infty} \:\frac{{x}^{\mathrm{3}} }{\mathrm{1}+{x}^{\mathrm{6}} }{dx}\:=\mathrm{0}\:\:\left({the}\:{function}\:{is}\:{odd}\right)\:\Rightarrow{I}\:=\mathrm{2}\int_{\mathrm{0}} ^{\infty} \frac{{dx}}{\mathrm{1}+{x}^{\mathrm{6}} } \\ $$$${cha}\mathrm{7}{gement}\:{x}\:={t}^{\frac{\mathrm{1}}{\mathrm{6}}} \:{give}\:{I}\:=\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{1}}{\mathrm{1}+{t}}×\frac{\mathrm{1}}{\mathrm{6}}{t}^{\frac{\mathrm{1}}{\mathrm{6}}−\mathrm{1}} {dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{t}^{\frac{\mathrm{1}}{\mathrm{6}}−\mathrm{1}} }{\mathrm{1}+{t}}\:{dt}=\frac{\mathrm{1}}{\mathrm{3}}\:\frac{\pi}{{sin}\left(\frac{\pi}{\mathrm{6}}\right)}\:=\frac{\pi}{\mathrm{3}×\frac{\mathrm{1}}{\mathrm{2}}}\:=\frac{\mathrm{2}\pi}{\mathrm{3}}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com