Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 67393 by Prof 40 last updated on 26/Aug/19

let y=(x−3)φ(2x+1)  find dy/dx when x=2

$${let}\:{y}=\left({x}−\mathrm{3}\right)\phi\left(\mathrm{2}{x}+\mathrm{1}\right) \\ $$$${find}\:{dy}/{dx}\:{when}\:{x}=\mathrm{2} \\ $$

Commented by mathmax by abdo last updated on 27/Aug/19

if we suppose that ϕ is a function  we get  y^′ (x) =ϕ(2x+1) +2(x−3)ϕ^′ (2x+1) ⇒  y^′ (2) =ϕ(5)−2ϕ^′ (5)

$${if}\:{we}\:{suppose}\:{that}\:\varphi\:{is}\:{a}\:{function}\:\:{we}\:{get} \\ $$$${y}^{'} \left({x}\right)\:=\varphi\left(\mathrm{2}{x}+\mathrm{1}\right)\:+\mathrm{2}\left({x}−\mathrm{3}\right)\varphi^{'} \left(\mathrm{2}{x}+\mathrm{1}\right)\:\Rightarrow \\ $$$${y}^{'} \left(\mathrm{2}\right)\:=\varphi\left(\mathrm{5}\right)−\mathrm{2}\varphi^{'} \left(\mathrm{5}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com