Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 67350 by TawaTawa last updated on 26/Aug/19

Commented by TawaTawa last updated on 26/Aug/19

Calculate the radius of the circle.

$$\mathrm{Calculate}\:\mathrm{the}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle}.\: \\ $$

Answered by mr W last updated on 26/Aug/19

a=9  b=7  c=8  s=((a+b+c)/2)=((9+7+8)/2)=12  Δ=area of triangle ABC  Δ=(√(s(s−a)(s−b)(s−c)))   (Heron′s)  r_A =radius of excircle touching a  we see  Δ=((br_A )/2)+((cr_A )/2)−((ar_A )/2)=(((b+c−a)r_A )/2)=(s−a)r_A   ⇒(s−a)r_A =(√(s(s−a)(s−b)(s−c)))  ⇒r_A =(√((s(s−b)(s−c))/(s−a)))  ⇒r_A =(√((12(12−7)(12−8))/(12−9)))=4(√5)

$${a}=\mathrm{9} \\ $$$${b}=\mathrm{7} \\ $$$${c}=\mathrm{8} \\ $$$${s}=\frac{{a}+{b}+{c}}{\mathrm{2}}=\frac{\mathrm{9}+\mathrm{7}+\mathrm{8}}{\mathrm{2}}=\mathrm{12} \\ $$$$\Delta={area}\:{of}\:{triangle}\:{ABC} \\ $$$$\Delta=\sqrt{{s}\left({s}−{a}\right)\left({s}−{b}\right)\left({s}−{c}\right)}\:\:\:\left({Heron}'{s}\right) \\ $$$${r}_{{A}} ={radius}\:{of}\:{excircle}\:{touching}\:{a} \\ $$$${we}\:{see} \\ $$$$\Delta=\frac{{br}_{{A}} }{\mathrm{2}}+\frac{{cr}_{{A}} }{\mathrm{2}}−\frac{{ar}_{{A}} }{\mathrm{2}}=\frac{\left({b}+{c}−{a}\right){r}_{{A}} }{\mathrm{2}}=\left({s}−{a}\right){r}_{{A}} \\ $$$$\Rightarrow\left({s}−{a}\right){r}_{{A}} =\sqrt{{s}\left({s}−{a}\right)\left({s}−{b}\right)\left({s}−{c}\right)} \\ $$$$\Rightarrow{r}_{{A}} =\sqrt{\frac{{s}\left({s}−{b}\right)\left({s}−{c}\right)}{{s}−{a}}} \\ $$$$\Rightarrow{r}_{{A}} =\sqrt{\frac{\mathrm{12}\left(\mathrm{12}−\mathrm{7}\right)\left(\mathrm{12}−\mathrm{8}\right)}{\mathrm{12}−\mathrm{9}}}=\mathrm{4}\sqrt{\mathrm{5}} \\ $$

Commented by mr W last updated on 26/Aug/19

Commented by mr W last updated on 26/Aug/19

ABC+OBC=AOC+AOB  Δ+((ar)/2)=((br)/2)+((cr)/2)  ⇒Δ=(((b+c−a)r)/2)=(s−a)r

$${ABC}+{OBC}={AOC}+{AOB} \\ $$$$\Delta+\frac{{ar}}{\mathrm{2}}=\frac{{br}}{\mathrm{2}}+\frac{{cr}}{\mathrm{2}} \\ $$$$\Rightarrow\Delta=\frac{\left({b}+{c}−{a}\right){r}}{\mathrm{2}}=\left({s}−{a}\right){r} \\ $$

Commented by TawaTawa last updated on 26/Aug/19

Wow, God bless you sir.

$$\mathrm{Wow},\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Commented by TawaTawa last updated on 26/Aug/19

I understand sir. God bless you sir.

$$\mathrm{I}\:\mathrm{understand}\:\mathrm{sir}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Commented by TawaTawa last updated on 26/Aug/19

Sir, you can be giving me questions on area of shaded region to try.

$$\mathrm{Sir},\:\mathrm{you}\:\mathrm{can}\:\mathrm{be}\:\mathrm{giving}\:\mathrm{me}\:\mathrm{questions}\:\mathrm{on}\:\mathrm{area}\:\mathrm{of}\:\mathrm{shaded}\:\mathrm{region}\:\mathrm{to}\:\mathrm{try}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com