Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 67337 by ajfour last updated on 25/Aug/19

m(p+1)=a  ((q(p+1))/(r+1))=b  &  ((p(p+1))/(q+1))=c  and  ((r(p+1))/(m+1))=d  find either of p,q,r,m in terms of  a,b,c,d.

$${m}\left({p}+\mathrm{1}\right)={a} \\ $$ $$\frac{{q}\left({p}+\mathrm{1}\right)}{{r}+\mathrm{1}}={b}\:\:\&\:\:\frac{{p}\left({p}+\mathrm{1}\right)}{{q}+\mathrm{1}}={c} \\ $$ $${and}\:\:\frac{{r}\left({p}+\mathrm{1}\right)}{{m}+\mathrm{1}}={d} \\ $$ $${find}\:{either}\:{of}\:{p},{q},{r},{m}\:{in}\:{terms}\:{of} \\ $$ $${a},{b},{c},{d}. \\ $$

Answered by mr W last updated on 25/Aug/19

m=(a/(p+1))  q=((p(p+1))/c)−1  r=((q(p+1))/b)−1=[((p(p+1))/c)−1]((p+1)/b)−1  r(p+1)=d(m+1)  {[((p(p+1))/c)−1]((p+1)/b)−1}(p+1)=((a/(p+1))+1)d  let p+1=t  {[(t−1)t−c]t−bc}t^2 =(a+t)bcd  ⇒t^5 −t^4 −ct^3 −bct^2 −bcdt−abcd=0  ......???

$${m}=\frac{{a}}{{p}+\mathrm{1}} \\ $$ $${q}=\frac{{p}\left({p}+\mathrm{1}\right)}{{c}}−\mathrm{1} \\ $$ $${r}=\frac{{q}\left({p}+\mathrm{1}\right)}{{b}}−\mathrm{1}=\left[\frac{{p}\left({p}+\mathrm{1}\right)}{{c}}−\mathrm{1}\right]\frac{{p}+\mathrm{1}}{{b}}−\mathrm{1} \\ $$ $${r}\left({p}+\mathrm{1}\right)={d}\left({m}+\mathrm{1}\right) \\ $$ $$\left\{\left[\frac{{p}\left({p}+\mathrm{1}\right)}{{c}}−\mathrm{1}\right]\frac{{p}+\mathrm{1}}{{b}}−\mathrm{1}\right\}\left({p}+\mathrm{1}\right)=\left(\frac{{a}}{{p}+\mathrm{1}}+\mathrm{1}\right){d} \\ $$ $${let}\:{p}+\mathrm{1}={t} \\ $$ $$\left\{\left[\left({t}−\mathrm{1}\right){t}−{c}\right]{t}−{bc}\right\}{t}^{\mathrm{2}} =\left({a}+{t}\right){bcd} \\ $$ $$\Rightarrow{t}^{\mathrm{5}} −{t}^{\mathrm{4}} −{ct}^{\mathrm{3}} −{bct}^{\mathrm{2}} −{bcdt}−{abcd}=\mathrm{0} \\ $$ $$......??? \\ $$

Commented byajfour last updated on 26/Aug/19

trying again to solve the general  quintic i have stuck upon this Sir!

$${trying}\:{again}\:{to}\:{solve}\:{the}\:{general} \\ $$ $${quintic}\:{i}\:{have}\:{stuck}\:{upon}\:{this}\:{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com