Question and Answers Forum

All Questions      Topic List

Permutation and Combination Questions

Previous in All Question      Next in All Question      

Previous in Permutation and Combination      Next in Permutation and Combination      

Question Number 67281 by Tony Lin last updated on 25/Aug/19

Commented by mr W last updated on 25/Aug/19

I get 3C_2 ^5 +3C_2 ^5 +12=72

$${I}\:{get}\:\mathrm{3}{C}_{\mathrm{2}} ^{\mathrm{5}} +\mathrm{3}{C}_{\mathrm{2}} ^{\mathrm{5}} +\mathrm{12}=\mathrm{72} \\ $$

Commented by Tony Lin last updated on 25/Aug/19

Repost Question No.66681

$${Repost}\:{Question}\:{No}.\mathrm{66681} \\ $$

Commented by Tony Lin last updated on 25/Aug/19

C_2 ^3 C_2 ^5 ×3−C_2 ^3 C_2 ^3 ×2=72

$${C}_{\mathrm{2}} ^{\mathrm{3}} {C}_{\mathrm{2}} ^{\mathrm{5}} ×\mathrm{3}−{C}_{\mathrm{2}} ^{\mathrm{3}} {C}_{\mathrm{2}} ^{\mathrm{3}} ×\mathrm{2}=\mathrm{72} \\ $$

Commented by Tony Lin last updated on 25/Aug/19

Commented by Tony Lin last updated on 25/Aug/19

orange part(2×4 inside)  ⇒choose two from three vertical lines  ⇒choose two from five horizontal lines  ⇒C_2 ^3 C_2 ^5 =30  blue part(2×4 outside)  ⇒the same as the orange part  ⇒C_2 ^3 C_2 ^5 =30  green part(2×4 middle)  ⇒only in this part the rectangles outside  combine with  the rectangles inside   ⇒the same as the orange part  ⇒C_2 ^3 C_2 ^5 =30  pink part(2×2 inside)  ⇒we have already counted this part  in the orange part but we count this   part again in the green part  ⇒choose two from three vertical lines  ⇒choose two from three horizontal lines  ⇒C_2 ^3 C_2 ^3 =9  yellow part(2×2 outside)  ⇒we have already counted this part  in the blue part but we count this  part again in the green part  ⇒the same as the pink part  ⇒C_2 ^3 C_2 ^3 =9  ∴there are (C_2 ^5 C_2 ^3 ×3−C_2 ^3 C_2 ^3 ×2=72) rectangles

$${orange}\:{part}\left(\mathrm{2}×\mathrm{4}\:{inside}\right) \\ $$$$\Rightarrow{choose}\:{two}\:{from}\:{three}\:{vertical}\:{lines} \\ $$$$\Rightarrow{choose}\:{two}\:{from}\:{five}\:{horizontal}\:{lines} \\ $$$$\Rightarrow{C}_{\mathrm{2}} ^{\mathrm{3}} {C}_{\mathrm{2}} ^{\mathrm{5}} =\mathrm{30} \\ $$$${blue}\:{part}\left(\mathrm{2}×\mathrm{4}\:{outside}\right) \\ $$$$\Rightarrow{the}\:{same}\:{as}\:{the}\:{orange}\:{part} \\ $$$$\Rightarrow{C}_{\mathrm{2}} ^{\mathrm{3}} {C}_{\mathrm{2}} ^{\mathrm{5}} =\mathrm{30} \\ $$$${green}\:{part}\left(\mathrm{2}×\mathrm{4}\:{middle}\right) \\ $$$$\Rightarrow{only}\:{in}\:{this}\:{part}\:{the}\:{rectangles}\:{outside} \\ $$$${combine}\:{with}\:\:{the}\:{rectangles}\:{inside}\: \\ $$$$\Rightarrow{the}\:{same}\:{as}\:{the}\:{orange}\:{part} \\ $$$$\Rightarrow{C}_{\mathrm{2}} ^{\mathrm{3}} {C}_{\mathrm{2}} ^{\mathrm{5}} =\mathrm{30} \\ $$$${pink}\:{part}\left(\mathrm{2}×\mathrm{2}\:{inside}\right) \\ $$$$\Rightarrow{we}\:{have}\:{already}\:{counted}\:{this}\:{part} \\ $$$${in}\:{the}\:{orange}\:{part}\:{but}\:{we}\:{count}\:{this}\: \\ $$$${part}\:{again}\:{in}\:{the}\:{green}\:{part} \\ $$$$\Rightarrow{choose}\:{two}\:{from}\:{three}\:{vertical}\:{lines} \\ $$$$\Rightarrow{choose}\:{two}\:{from}\:{three}\:{horizontal}\:{lines} \\ $$$$\Rightarrow{C}_{\mathrm{2}} ^{\mathrm{3}} {C}_{\mathrm{2}} ^{\mathrm{3}} =\mathrm{9} \\ $$$${yellow}\:{part}\left(\mathrm{2}×\mathrm{2}\:{outside}\right) \\ $$$$\Rightarrow{we}\:{have}\:{already}\:{counted}\:{this}\:{part} \\ $$$${in}\:{the}\:{blue}\:{part}\:{but}\:{we}\:{count}\:{this} \\ $$$${part}\:{again}\:{in}\:{the}\:{green}\:{part} \\ $$$$\Rightarrow{the}\:{same}\:{as}\:{the}\:{pink}\:{part} \\ $$$$\Rightarrow{C}_{\mathrm{2}} ^{\mathrm{3}} {C}_{\mathrm{2}} ^{\mathrm{3}} =\mathrm{9} \\ $$$$\therefore{there}\:{are}\:\left({C}_{\mathrm{2}} ^{\mathrm{5}} {C}_{\mathrm{2}} ^{\mathrm{3}} ×\mathrm{3}−{C}_{\mathrm{2}} ^{\mathrm{3}} {C}_{\mathrm{2}} ^{\mathrm{3}} ×\mathrm{2}=\mathrm{72}\right)\:{rectangles} \\ $$

Commented by Rasheed.Sindhi last updated on 25/Aug/19

Sir Tony Lin, I don′t see any error in  your approach.However I want to see  where′s deffect in my approach! Pl  cooperate with me.

$$\mathrm{Sir}\:\mathrm{Tony}\:\mathrm{Lin},\:\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{see}\:\mathrm{any}\:\mathrm{error}\:\mathrm{in} \\ $$$$\mathrm{your}\:\mathrm{approach}.\mathrm{However}\:\mathrm{I}\:\mathrm{want}\:\mathrm{to}\:\mathrm{see} \\ $$$$\mathrm{where}'\mathrm{s}\:\mathrm{deffect}\:\mathrm{in}\:\mathrm{my}\:\mathrm{approach}!\:\mathrm{Pl} \\ $$$$\mathrm{cooperate}\:\mathrm{with}\:\mathrm{me}. \\ $$

Answered by Rasheed.Sindhi last updated on 25/Aug/19

Commented by Rasheed.Sindhi last updated on 25/Aug/19

^• In order to prevent missing/repeating  in counting,we′ll count rectangles with  their left-upper corners.For example  all the rectangles whose left-upper  corner is A will be counted together  and recorded with A.In this way we  will count rectangles with each and  every vertex.  ^• A: Edges from A to the left:           AB,AC (2 edges)           Edges from A to the down:          AG,AL,AQ,AA_1  (4 edges)            ∴Number of rectangles with left-           upper corner A=2×4=8           (Recall that every upper edge            makes a rectangle with every            left edge.)           .......

$$\:^{\bullet} {In}\:{order}\:{to}\:{prevent}\:{missing}/{repeating} \\ $$$${in}\:{counting},{we}'{ll}\:{count}\:{rectangles}\:{with} \\ $$$${their}\:\boldsymbol{{left}}-\boldsymbol{{upper}}\:\boldsymbol{{corners}}.{For}\:{example} \\ $$$${all}\:{the}\:{rectangles}\:{whose}\:{left}-{upper} \\ $$$${corner}\:{is}\:\mathrm{A}\:{will}\:{be}\:{counted}\:{together} \\ $$$${and}\:{recorded}\:{with}\:\mathrm{A}.{In}\:{this}\:{way}\:{we} \\ $$$${will}\:{count}\:{rectangles}\:{with}\:{each}\:{and} \\ $$$${every}\:{vertex}. \\ $$$$\:^{\bullet} \mathrm{A}:\:\mathcal{E}{dges}\:{from}\:\mathrm{A}\:{to}\:{the}\:{left}: \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{AB},\mathrm{AC}\:\left(\mathrm{2}\:{edges}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\mathcal{E}{dges}\:{from}\:\mathrm{A}\:{to}\:{the}\:{down}: \\ $$$$\:\:\:\:\:\:\:\:\mathrm{AG},\mathrm{AL},\mathrm{AQ},\mathrm{AA}_{\mathrm{1}} \:\left(\mathrm{4}\:{edges}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\therefore{Number}\:{of}\:{rectangles}\:{with}\:{left}- \\ $$$$\:\:\:\:\:\:\:\:\:{upper}\:{corner}\:\mathrm{A}=\mathrm{2}×\mathrm{4}=\mathrm{8} \\ $$$$\:\:\:\:\:\:\:\:\:\left({Recall}\:{that}\:{every}\:{upper}\:{edge}\right. \\ $$$$\:\:\:\:\:\:\:\:\:\:{makes}\:{a}\:{rectangle}\:{with}\:{every} \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:{left}\:{edge}.\right) \\ $$$$\:\:\:\:\:\:\:\:\:....... \\ $$

Commented by Tony Lin last updated on 25/Aug/19

A:(AB,AC)×(AG,AL,AQ,AA_1 )=8  B:BC×(BI,BN,BS,BB_1 )=4  C:0  D:(DE,DF)×(DH,DM,DR,DV)=8  E:EF×(EI,EN,ES,EW)=4  F:0  G: { (((GI,GK)×(GL,GQ,GA_1 )=6)),(((GH,GJ)×(GL,GQ)=4)) :}  H: { (((HI,HJ)×(HM,HR,HV)=6)),((HK×(HM,HR)=2)) :}  I: { ((IJ×(IN,IS,IW)=3)),((IK×(IN,IS,IW)=3)) :}  J:JK×(JO,JT)=2  K:0  L: { (((LN,LP)×(LQ,LA_1 )=4)),(((LM,LO)×LQ=2)) :}  M: { (((MN,MO,MP)×MR=3)),(((MN,MO)×MV=2)) :}  N: { ((NO×(NS,NW)=2)),((NP×(NS,NB_1 )=2)) :}  O:OP×OT=1  P:0  Q:(QS,QU)×QA_1 =2  R:(RS,RT)×RV=2  S: { ((ST×SW=1)),((SU×SB_1 =1)) :}  T∼C_1 :0  SUM:72  a little complex, but the result is the same  this is the power of classification

$${A}:\left({AB},{AC}\right)×\left({AG},{AL},{AQ},{AA}_{\mathrm{1}} \right)=\mathrm{8} \\ $$$${B}:{BC}×\left({BI},{BN},{BS},{BB}_{\mathrm{1}} \right)=\mathrm{4} \\ $$$${C}:\mathrm{0} \\ $$$${D}:\left({DE},{DF}\right)×\left({DH},{DM},{DR},{DV}\right)=\mathrm{8} \\ $$$${E}:{EF}×\left({EI},{EN},{ES},{EW}\right)=\mathrm{4} \\ $$$${F}:\mathrm{0} \\ $$$${G}:\begin{cases}{\left({GI},{GK}\right)×\left({GL},{GQ},{GA}_{\mathrm{1}} \right)=\mathrm{6}}\\{\left({GH},{GJ}\right)×\left({GL},{GQ}\right)=\mathrm{4}}\end{cases} \\ $$$${H}:\begin{cases}{\left({HI},{HJ}\right)×\left({HM},{HR},{HV}\right)=\mathrm{6}}\\{{HK}×\left({HM},{HR}\right)=\mathrm{2}}\end{cases} \\ $$$${I}:\begin{cases}{{IJ}×\left({IN},{IS},{IW}\right)=\mathrm{3}}\\{{IK}×\left({IN},{IS},{IW}\right)=\mathrm{3}}\end{cases} \\ $$$${J}:{JK}×\left({JO},{JT}\right)=\mathrm{2} \\ $$$${K}:\mathrm{0} \\ $$$${L}:\begin{cases}{\left({LN},{LP}\right)×\left({LQ},{LA}_{\mathrm{1}} \right)=\mathrm{4}}\\{\left({LM},{LO}\right)×{LQ}=\mathrm{2}}\end{cases} \\ $$$${M}:\begin{cases}{\left({MN},{MO},{MP}\right)×{MR}=\mathrm{3}}\\{\left({MN},{MO}\right)×{MV}=\mathrm{2}}\end{cases} \\ $$$${N}:\begin{cases}{{NO}×\left({NS},{NW}\right)=\mathrm{2}}\\{{NP}×\left({NS},{NB}_{\mathrm{1}} \right)=\mathrm{2}}\end{cases} \\ $$$${O}:{OP}×{OT}=\mathrm{1} \\ $$$${P}:\mathrm{0} \\ $$$${Q}:\left({QS},{QU}\right)×{QA}_{\mathrm{1}} =\mathrm{2} \\ $$$${R}:\left({RS},{RT}\right)×{RV}=\mathrm{2} \\ $$$${S}:\begin{cases}{{ST}×{SW}=\mathrm{1}}\\{{SU}×{SB}_{\mathrm{1}} =\mathrm{1}}\end{cases} \\ $$$${T}\sim{C}_{\mathrm{1}} :\mathrm{0} \\ $$$${SUM}:\mathrm{72} \\ $$$${a}\:{little}\:{complex},\:{but}\:{the}\:{result}\:{is}\:{the}\:{same} \\ $$$${this}\:{is}\:{the}\:{power}\:{of}\:{classification} \\ $$

Commented by peter frank last updated on 25/Aug/19

thank you both

$${thank}\:{you}\:{both} \\ $$

Commented by Rasheed.Sindhi last updated on 25/Aug/19

Great Thanks for Great Help S∥^(⧫) R!  I found my mistake after comparing  my work with yours!    Also thank ⋓ Peter Frank!

$$\mathcal{G}{reat}\:\mathcal{T}{hanks}\:{for}\:\mathcal{G}{reat}\:\mathcal{H}{elp}\:\mathrm{S}\overset{\blacklozenge} {\parallel}\mathrm{R}! \\ $$$$\mathcal{I}\:{found}\:{my}\:{mistake}\:{after}\:{comparing} \\ $$$${my}\:{work}\:{with}\:{yours}! \\ $$$$ \\ $$$${Also}\:{thank}\:\Cup\:{Peter}\:{Frank}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com