Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 67193 by Rasheed.Sindhi last updated on 23/Aug/19

Commented by Rasheed.Sindhi last updated on 24/Aug/19

           Some Counting Problems          _(−)   (a)How many rectangles are in the         above picture?  (b)How many rectangles contain        vertex L?  (c)How many rectangles contain        GQ^(−)  as an  edge?

$$\:\underset{−} {\:\:\:\:\:\:\:\:\:\:\mathbb{S}\mathrm{ome}\:\mathbb{C}\mathrm{ounting}\:\mathbb{P}\mathrm{roblems}\:\:\:\:\:\:\:\:\:\:} \\ $$$$\left({a}\right){How}\:{many}\:{rectangles}\:{are}\:{in}\:{the} \\ $$$$\:\:\:\:\:\:\:{above}\:{picture}? \\ $$$$\left({b}\right){How}\:{many}\:{rectangles}\:{contain} \\ $$$$\:\:\:\:\:\:{vertex}\:\mathrm{L}? \\ $$$$\left({c}\right){How}\:{many}\:{rectangles}\:{contain} \\ $$$$\:\:\:\:\:\:\overline {{GQ}}\:{as}\:{an}\:\:{edge}? \\ $$

Commented by Tony Lin last updated on 24/Aug/19

(1)C_2 ^7 C_2 ^5 =210  choose two from seven vertical lines   choose two from five horizontal lines  (2)C_1 ^6 C_1 ^4 =24  choose one vertical line except OK  choose one horizontal line except BH_1   then L would be a vertex of rectangles  (3)C_1 ^4 =4  choose one from JT, IS,HR&FP  then GQ would be an edge of rectangles

$$\left(\mathrm{1}\right){C}_{\mathrm{2}} ^{\mathrm{7}} {C}_{\mathrm{2}} ^{\mathrm{5}} =\mathrm{210} \\ $$$${choose}\:{two}\:{from}\:{seven}\:{vertical}\:{lines}\: \\ $$$${choose}\:{two}\:{from}\:{five}\:{horizontal}\:{lines} \\ $$$$\left(\mathrm{2}\right){C}_{\mathrm{1}} ^{\mathrm{6}} {C}_{\mathrm{1}} ^{\mathrm{4}} =\mathrm{24} \\ $$$${choose}\:{one}\:{vertical}\:{line}\:{except}\:{OK} \\ $$$${choose}\:{one}\:{horizontal}\:{line}\:{except}\:{BH}_{\mathrm{1}} \\ $$$${then}\:{L}\:{would}\:{be}\:{a}\:{vertex}\:{of}\:{rectangles} \\ $$$$\left(\mathrm{3}\right){C}_{\mathrm{1}} ^{\mathrm{4}} =\mathrm{4} \\ $$$${choose}\:{one}\:{from}\:{JT},\:{IS},{HR\&FP} \\ $$$${then}\:{GQ}\:{would}\:{be}\:{an}\:{edge}\:{of}\:{rectangles} \\ $$

Commented by mr W last updated on 24/Aug/19

nice question and nice solution!  what′s the answer if squares are  not accepted as rectangles?

$${nice}\:{question}\:{and}\:{nice}\:{solution}! \\ $$$${what}'{s}\:{the}\:{answer}\:{if}\:{squares}\:{are} \\ $$$${not}\:{accepted}\:{as}\:{rectangles}? \\ $$

Commented by Tony Lin last updated on 24/Aug/19

C_2 ^7 C_2 ^5 −4×6−3×5−2×4−1×3=160  all−1×1□−2×2□−3×3□−4×4□

$${C}_{\mathrm{2}} ^{\mathrm{7}} {C}_{\mathrm{2}} ^{\mathrm{5}} −\mathrm{4}×\mathrm{6}−\mathrm{3}×\mathrm{5}−\mathrm{2}×\mathrm{4}−\mathrm{1}×\mathrm{3}=\mathrm{160} \\ $$$${all}−\mathrm{1}×\mathrm{1}\Box−\mathrm{2}×\mathrm{2}\Box−\mathrm{3}×\mathrm{3}\Box−\mathrm{4}×\mathrm{4}\Box \\ $$

Commented by mr W last updated on 24/Aug/19

perfect sir!

$${perfect}\:{sir}! \\ $$

Commented by Rasheed.Sindhi last updated on 24/Aug/19

The Easiest Approach!  Thαnks Sir Tony Lin!

$$\mathcal{T}{he}\:\mathcal{E}{asiest}\:\mathcal{A}{pproach}! \\ $$$$\mathcal{T}{h}\alpha{nks}\:{Sir}\:{Tony}\:{Lin}! \\ $$

Commented by Rasheed.Sindhi last updated on 24/Aug/19

Sir Tony Lin, Q#66681 is also  looking for you

$${Sir}\:{Tony}\:{Lin},\:{Q}#\mathrm{66681}\:{is}\:{also} \\ $$$${looking}\:{for}\:{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com