Question Number 6687 by Tawakalitu. last updated on 13/Jul/16 | ||
$${Given}\:{that} \\ $$$$ \\ $$$$\mathrm{4362}\:=\:\mathrm{12} \\ $$$$\mathrm{9495}\:=\:\mathrm{21} \\ $$$$\mathrm{3816}\:=\mathrm{18} \\ $$$${Then}\:=........ \\ $$$$\mathrm{9649}\:=\:? \\ $$ | ||
Answered by Rasheed Soomro last updated on 14/Jul/16 | ||
$$\mathrm{4362}\:=\:\mathrm{12} \\ $$$$\mathrm{9495}\:=\:\mathrm{21} \\ $$$$\mathrm{3816}\:=\mathrm{18} \\ $$$$\mathrm{9649}\:=\:? \\ $$$$−−−−−−−−−−−−−−−−−−−−− \\ $$$${I}\:{have}\:{discovered}\:{one}\:{logic}.\:{Other}\:{logics} \\ $$$${may}\:{be}\:{possible}.\:{I}\:{am}\:{writing}\:{my}\:{logic} \\ $$$${in}\:{a}\:{form}\:{of}\:{formula}\:{here}. \\ $$$$\:\:\:\:\:\:\:\:\:\left(\boldsymbol{{Sum}}\:\boldsymbol{{of}}\:\boldsymbol{{digits}}\right)−\left[\:\left(\boldsymbol{{unit}}\:\boldsymbol{{digit}}+\mathrm{1}\right)\left(\boldsymbol{{mod}}\:\mathrm{7}\right)\:\right] \\ $$$$\:\:\:\:\:\:\:\:\:\left(\mathrm{4}+\mathrm{3}+\mathrm{6}+\mathrm{2}\right)−\left[\left(\mathrm{2}+\mathrm{1}\right)\left({mod}\:\mathrm{7}\right)\right]=\mathrm{15}−\mathrm{3}=\mathrm{12} \\ $$$$\:\:\:\:\:\:\:\:\:\left(\mathrm{9}+\mathrm{4}+\mathrm{9}+\mathrm{5}\right)−\left[\left(\mathrm{5}+\mathrm{1}\right)\left({mod}\:\mathrm{7}\right)\right]=\mathrm{27}−\mathrm{6}=\mathrm{21} \\ $$$$\:\:\:\:\:\:\:\:\:\:\left(\mathrm{3}+\mathrm{8}+\mathrm{1}+\mathrm{6}\right)−\left[\left(\mathrm{6}+\mathrm{1}\right)\left({mod}\:\mathrm{7}\right)\right]=\mathrm{18}−\mathrm{0}=\mathrm{18} \\ $$$${So}, \\ $$$$\:\:\:\:\:\:\:\:\:\:\left(\mathrm{9}+\mathrm{6}+\mathrm{4}+\mathrm{9}\right)−\left[\left(\mathrm{9}+\mathrm{1}\right)\left({mod}\:\mathrm{7}\right)\right]=\mathrm{28}−\mathrm{3}=\underset{=} {\overset{=} {\parallel\mathrm{25}\parallel}} \\ $$ | ||
Commented by Tawakalitu. last updated on 15/Jul/16 | ||
$${Wow}\:{thanks}. \\ $$ | ||