Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 6687 by Tawakalitu. last updated on 13/Jul/16

Given that    4362 = 12  9495 = 21  3816 =18  Then =........  9649 = ?

$${Given}\:{that} \\ $$$$ \\ $$$$\mathrm{4362}\:=\:\mathrm{12} \\ $$$$\mathrm{9495}\:=\:\mathrm{21} \\ $$$$\mathrm{3816}\:=\mathrm{18} \\ $$$${Then}\:=........ \\ $$$$\mathrm{9649}\:=\:? \\ $$

Answered by Rasheed Soomro last updated on 14/Jul/16

4362 = 12  9495 = 21  3816 =18  9649 = ?  −−−−−−−−−−−−−−−−−−−−−  I have discovered one logic. Other logics  may be possible. I am writing my logic  in a form of formula here.           (Sum of digits)−[ (unit digit+1)(mod 7) ]           (4+3+6+2)−[(2+1)(mod 7)]=15−3=12           (9+4+9+5)−[(5+1)(mod 7)]=27−6=21            (3+8+1+6)−[(6+1)(mod 7)]=18−0=18  So,            (9+6+4+9)−[(9+1)(mod 7)]=28−3=∥25∥_(=) ^(=)

$$\mathrm{4362}\:=\:\mathrm{12} \\ $$$$\mathrm{9495}\:=\:\mathrm{21} \\ $$$$\mathrm{3816}\:=\mathrm{18} \\ $$$$\mathrm{9649}\:=\:? \\ $$$$−−−−−−−−−−−−−−−−−−−−− \\ $$$${I}\:{have}\:{discovered}\:{one}\:{logic}.\:{Other}\:{logics} \\ $$$${may}\:{be}\:{possible}.\:{I}\:{am}\:{writing}\:{my}\:{logic} \\ $$$${in}\:{a}\:{form}\:{of}\:{formula}\:{here}. \\ $$$$\:\:\:\:\:\:\:\:\:\left(\boldsymbol{{Sum}}\:\boldsymbol{{of}}\:\boldsymbol{{digits}}\right)−\left[\:\left(\boldsymbol{{unit}}\:\boldsymbol{{digit}}+\mathrm{1}\right)\left(\boldsymbol{{mod}}\:\mathrm{7}\right)\:\right] \\ $$$$\:\:\:\:\:\:\:\:\:\left(\mathrm{4}+\mathrm{3}+\mathrm{6}+\mathrm{2}\right)−\left[\left(\mathrm{2}+\mathrm{1}\right)\left({mod}\:\mathrm{7}\right)\right]=\mathrm{15}−\mathrm{3}=\mathrm{12} \\ $$$$\:\:\:\:\:\:\:\:\:\left(\mathrm{9}+\mathrm{4}+\mathrm{9}+\mathrm{5}\right)−\left[\left(\mathrm{5}+\mathrm{1}\right)\left({mod}\:\mathrm{7}\right)\right]=\mathrm{27}−\mathrm{6}=\mathrm{21} \\ $$$$\:\:\:\:\:\:\:\:\:\:\left(\mathrm{3}+\mathrm{8}+\mathrm{1}+\mathrm{6}\right)−\left[\left(\mathrm{6}+\mathrm{1}\right)\left({mod}\:\mathrm{7}\right)\right]=\mathrm{18}−\mathrm{0}=\mathrm{18} \\ $$$${So}, \\ $$$$\:\:\:\:\:\:\:\:\:\:\left(\mathrm{9}+\mathrm{6}+\mathrm{4}+\mathrm{9}\right)−\left[\left(\mathrm{9}+\mathrm{1}\right)\left({mod}\:\mathrm{7}\right)\right]=\mathrm{28}−\mathrm{3}=\underset{=} {\overset{=} {\parallel\mathrm{25}\parallel}} \\ $$

Commented by Tawakalitu. last updated on 15/Jul/16

Wow thanks.

$${Wow}\:{thanks}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com