Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 66126 by Joel122 last updated on 09/Aug/19

Is there any formula to find sum of  1 + n^2  + n^4  + n^6  + n^8  + ... + n^(2k)  + ...  where n,k ∈ Z^+

$$\mathrm{Is}\:\mathrm{there}\:\mathrm{any}\:\mathrm{formula}\:\mathrm{to}\:\mathrm{find}\:\mathrm{sum}\:\mathrm{of} \\ $$$$\mathrm{1}\:+\:{n}^{\mathrm{2}} \:+\:{n}^{\mathrm{4}} \:+\:{n}^{\mathrm{6}} \:+\:{n}^{\mathrm{8}} \:+\:...\:+\:{n}^{\mathrm{2}{k}} \:+\:... \\ $$$$\mathrm{where}\:{n},{k}\:\in\:\mathbb{Z}^{+} \: \\ $$

Answered by mr W last updated on 09/Aug/19

G.P. with  a_0 =1  q=n^2   a_k =(n^2 )^k   S_k =((n^(2(k+1)) −1)/(n^2 −1)) for n≠1  S_k =k for n=1    lim_(k→∞) S_k =∞ since n≥1

$${G}.{P}.\:{with} \\ $$$${a}_{\mathrm{0}} =\mathrm{1} \\ $$$${q}={n}^{\mathrm{2}} \\ $$$${a}_{{k}} =\left({n}^{\mathrm{2}} \right)^{{k}} \\ $$$${S}_{{k}} =\frac{{n}^{\mathrm{2}\left({k}+\mathrm{1}\right)} −\mathrm{1}}{{n}^{\mathrm{2}} −\mathrm{1}}\:{for}\:{n}\neq\mathrm{1} \\ $$$${S}_{{k}} ={k}\:{for}\:{n}=\mathrm{1} \\ $$$$ \\ $$$$\underset{{k}\rightarrow\infty} {\mathrm{lim}}{S}_{{k}} =\infty\:{since}\:{n}\geqslant\mathrm{1} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com