Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 65841 by Rio Michael last updated on 04/Aug/19

 (d/dx)(((tan^2 x)/(1 + cos x))) =?

$$\:\frac{{d}}{{dx}}\left(\frac{{tan}\:^{\mathrm{2}} {x}}{\mathrm{1}\:+\:{cos}\:{x}}\right)\:=? \\ $$

Commented by som(math1967) last updated on 05/Aug/19

MJS Sir it is my way  (d/dx)(((sec^2 x−1)/(1+cosx)))=(d/dx){((1−cos^2 x)/(cos^2 x(1+cosx)))}  =(d/dx){(((1+cosx)(1−cosx))/(cos^2 x(1+cosx)))}  =(d/dx)(((1−cosx)/(cos^2 x)))=(d/dx)(sec^2 x−secx)  =2sec^2 xtanx−secxtanx

$${MJS}\:{Sir}\:{it}\:{is}\:{my}\:{way} \\ $$$$\frac{{d}}{{dx}}\left(\frac{{sec}^{\mathrm{2}} {x}−\mathrm{1}}{\mathrm{1}+{cosx}}\right)=\frac{{d}}{{dx}}\left\{\frac{\mathrm{1}−{cos}^{\mathrm{2}} {x}}{{cos}^{\mathrm{2}} {x}\left(\mathrm{1}+{cosx}\right)}\right\} \\ $$$$=\frac{{d}}{{dx}}\left\{\frac{\left(\mathrm{1}+{cosx}\right)\left(\mathrm{1}−{cosx}\right)}{{cos}^{\mathrm{2}} {x}\left(\mathrm{1}+{cosx}\right)}\right\} \\ $$$$=\frac{{d}}{{dx}}\left(\frac{\mathrm{1}−{cosx}}{{cos}^{\mathrm{2}} {x}}\right)=\frac{{d}}{{dx}}\left({sec}^{\mathrm{2}} {x}−{secx}\right) \\ $$$$=\mathrm{2}{sec}^{\mathrm{2}} {xtanx}−{secxtanx} \\ $$

Answered by MJS last updated on 04/Aug/19

(d/dx)[(u/v)]=((u′v−uv′)/v^2 )=       u=tan^2  x → u′=2((tan x)/(cos^2  x))=2((sin x)/(cos^3  x))       v=1+cos x → v′=−sin x  =((2((sin x)/(cos^3  x))(1+cos x)+tan^2  x sin x)/((1+cos x)^2 ))=  ...  =(((2−cos x)tan x)/(cos^2  x))

$$\frac{{d}}{{dx}}\left[\frac{{u}}{{v}}\right]=\frac{{u}'{v}−{uv}'}{{v}^{\mathrm{2}} }= \\ $$$$\:\:\:\:\:{u}=\mathrm{tan}^{\mathrm{2}} \:{x}\:\rightarrow\:{u}'=\mathrm{2}\frac{\mathrm{tan}\:{x}}{\mathrm{cos}^{\mathrm{2}} \:{x}}=\mathrm{2}\frac{\mathrm{sin}\:{x}}{\mathrm{cos}^{\mathrm{3}} \:{x}} \\ $$$$\:\:\:\:\:{v}=\mathrm{1}+\mathrm{cos}\:{x}\:\rightarrow\:{v}'=−\mathrm{sin}\:{x} \\ $$$$=\frac{\mathrm{2}\frac{\mathrm{sin}\:{x}}{\mathrm{cos}^{\mathrm{3}} \:{x}}\left(\mathrm{1}+\mathrm{cos}\:{x}\right)+\mathrm{tan}^{\mathrm{2}} \:{x}\:\mathrm{sin}\:{x}}{\left(\mathrm{1}+\mathrm{cos}\:{x}\right)^{\mathrm{2}} }= \\ $$$$... \\ $$$$=\frac{\left(\mathrm{2}−\mathrm{cos}\:{x}\right)\mathrm{tan}\:{x}}{\mathrm{cos}^{\mathrm{2}} \:{x}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com