Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 657 by 123456 last updated on 21/Feb/15

if (a_n ) and (b_n ) are two real sequence  such that e^a_n  =a_n +e^b_n    a) proof that a_n >0⇒b_n >0  b) if a_n >0∀n∈N if Σ_(n=0) ^(+∞) a_n  converge then  Σ_(n=0) ^(+∞) (b_n /a_n ) converge

$${if}\:\left({a}_{{n}} \right)\:{and}\:\left({b}_{{n}} \right)\:{are}\:{two}\:{real}\:{sequence} \\ $$ $${such}\:{that}\:{e}^{{a}_{{n}} } ={a}_{{n}} +{e}^{{b}_{{n}} } \\ $$ $$\left.{a}\right)\:{proof}\:{that}\:{a}_{{n}} >\mathrm{0}\Rightarrow{b}_{{n}} >\mathrm{0} \\ $$ $$\left.{b}\right)\:{if}\:{a}_{{n}} >\mathrm{0}\forall{n}\in\mathbb{N}\:{if}\:\underset{{n}=\mathrm{0}} {\overset{+\infty} {\sum}}{a}_{{n}} \:{converge}\:{then} \\ $$ $$\underset{{n}=\mathrm{0}} {\overset{+\infty} {\sum}}\frac{{b}_{{n}} }{{a}_{{n}} }\:{converge} \\ $$

Answered by prakash jain last updated on 20/Feb/15

e^a_n  =1+a_n +(a_n ^2 /(2!))+...   a_n >0⇒e^b_n  =e^a_n  −a_n >1⇒b_n >0

$${e}^{{a}_{{n}} } =\mathrm{1}+{a}_{{n}} +\frac{{a}_{{n}} ^{\mathrm{2}} }{\mathrm{2}!}+... \\ $$ $$\:{a}_{{n}} >\mathrm{0}\Rightarrow{e}^{{b}_{{n}} } ={e}^{{a}_{{n}} } −{a}_{{n}} >\mathrm{1}\Rightarrow{b}_{{n}} >\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com