Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 64625 by ajfour last updated on 19/Jul/19

Commented by ajfour last updated on 19/Jul/19

Are AD, BE, CF  concurrent  generally? please help check.

$${Are}\:{AD},\:{BE},\:{CF}\:\:{concurrent} \\ $$$${generally}?\:{please}\:{help}\:{check}. \\ $$

Commented by MJS last updated on 20/Jul/19

yes  I will show it tomorrow

$$\mathrm{yes} \\ $$$$\mathrm{I}\:\mathrm{will}\:\mathrm{show}\:\mathrm{it}\:\mathrm{tomorrow} \\ $$

Commented by MJS last updated on 20/Jul/19

∣AE∣=∣AF∣  ∣BF∣=∣BD∣  ∣CD∣=∣CE∣  is it possible to show geometrically? it reminds  of Heron′s method...  I can “only” calculate it

$$\mid{AE}\mid=\mid{AF}\mid \\ $$$$\mid{BF}\mid=\mid{BD}\mid \\ $$$$\mid{CD}\mid=\mid{CE}\mid \\ $$$$\mathrm{is}\:\mathrm{it}\:\mathrm{possible}\:\mathrm{to}\:\mathrm{show}\:\mathrm{geometrically}?\:\mathrm{it}\:\mathrm{reminds} \\ $$$$\mathrm{of}\:\mathrm{Heron}'\mathrm{s}\:\mathrm{method}... \\ $$$$\mathrm{I}\:\mathrm{can}\:``\mathrm{only}''\:\mathrm{calculate}\:\mathrm{it} \\ $$

Answered by ajfour last updated on 20/Jul/19

Commented by ajfour last updated on 20/Jul/19

BC=a, CA=b, AB=c   (vector)  ⇒  a+b+c=0  ((BD)/(DC))=p , ((CE)/(EA))=q , ((AF)/(FB))=r  eq. of BE        r=λ(a+qb)  eq. of CF       r=a+μ(1−r)c  eq. of AD      r=pa+ρ(−c−ap)  Intersection of BE & CF  OG_1 =λ(a+qb)=a+μ(1−r)c  ⇒   λ(a+qb)=a−μ(1−r)(a+b)  ⇒  λ=1−μ(1−r)         ...(i)         λq=−μ(1−r)         ...(ii)  Similarly from intersection of  CF & AD ,  OG_2 =    a−μ(1−r)(a+b)=pa+ρ(a+b−ap)  ⇒  1−μ(1−r)=p+ρ(1−p)   ...(iii)          −μ(1−r)=ρ            ...(iv)  Also   ∣a∣p=∣c∣(1−r)                ∣b∣q=∣a∣(1−p)                ∣c∣r=∣b∣(1−q)  And since            ∣a∣p+∣b∣q=∣a∣          ∣b∣q+∣c∣r=∣b∣          ∣c∣r+∣a∣p=∣c∣  if we let  ∣s∣=∣a∣+∣b∣+∣c∣  ⇒ ∣a∣p=∣s∣−∣b∣ , ∣b∣q=∣s∣−∣c∣, ∣c∣r=∣s∣−∣a∣  Now from (i)&(ii)    1−λ=μ(1−r)        λq=μ(r−1)  ⇒  λ−1=λq  ⇒  λ=(1/(1−q))=(1/(1−((∣s∣−∣c∣)/(∣b∣))))=((∣b∣)/(∣b∣+∣c∣−∣s∣))       μ=((1−λ)/(1−r))=(((((∣c∣−∣s∣)/(∣b∣+∣c∣−∣s∣))))/(1−((∣s∣−∣a∣)/(∣c∣))))  ⇒ μ=((∣c∣(∣c∣−∣s∣))/((∣b∣+∣c∣−∣s∣)(∣c∣+∣a∣−∣s∣)))  OG_1 =λ(a+qb)=a+μ(1−r)c     =((∣b∣)/(∣b∣+∣c∣−∣s∣))[a+(((∣s∣−∣c∣)/(∣b∣)))b]  OG_2 =a−μ(1−r)(a+b)         =a−((∣c∣(∣c∣−∣s∣)(1−((∣s∣−∣a∣)/(∣c∣)))(a+b))/((∣b∣+∣c∣−∣s∣)(∣c∣+∣a∣−∣s∣)))      =a−(((∣c∣−∣s∣)(a+b))/(∣b∣+∣c∣−∣s∣))  OG_2 =((∣b∣)/(∣b∣+∣c∣−∣s∣))[a+(((∣s∣−∣c∣)/(∣b∣)))b]  ⇒   OG_2 =OG_1   hence AD, BE, CF  are concurrent.

$${BC}={a},\:{CA}={b},\:{AB}={c}\:\:\:\left({vector}\right) \\ $$$$\Rightarrow\:\:{a}+{b}+{c}=\mathrm{0} \\ $$$$\frac{{BD}}{{DC}}={p}\:,\:\frac{{CE}}{{EA}}={q}\:,\:\frac{{AF}}{{FB}}={r} \\ $$$${eq}.\:{of}\:{BE}\:\:\:\:\:\:\:\:{r}=\lambda\left({a}+{qb}\right) \\ $$$${eq}.\:{of}\:{CF}\:\:\:\:\:\:\:{r}={a}+\mu\left(\mathrm{1}−{r}\right){c} \\ $$$${eq}.\:{of}\:{AD}\:\:\:\:\:\:{r}={pa}+\rho\left(−{c}−{ap}\right) \\ $$$${Intersection}\:{of}\:{BE}\:\&\:{CF} \\ $$$${OG}_{\mathrm{1}} =\lambda\left({a}+{qb}\right)={a}+\mu\left(\mathrm{1}−{r}\right){c} \\ $$$$\Rightarrow\:\:\:\lambda\left({a}+{qb}\right)={a}−\mu\left(\mathrm{1}−{r}\right)\left({a}+{b}\right) \\ $$$$\Rightarrow\:\:\lambda=\mathrm{1}−\mu\left(\mathrm{1}−{r}\right)\:\:\:\:\:\:\:\:\:...\left({i}\right) \\ $$$$\:\:\:\:\:\:\:\lambda{q}=−\mu\left(\mathrm{1}−{r}\right)\:\:\:\:\:\:\:\:\:...\left({ii}\right) \\ $$$${Similarly}\:{from}\:{intersection}\:{of} \\ $$$${CF}\:\&\:{AD}\:,\:\:{OG}_{\mathrm{2}} = \\ $$$$\:\:{a}−\mu\left(\mathrm{1}−{r}\right)\left({a}+{b}\right)={pa}+\rho\left({a}+{b}−{ap}\right) \\ $$$$\Rightarrow\:\:\mathrm{1}−\mu\left(\mathrm{1}−{r}\right)={p}+\rho\left(\mathrm{1}−{p}\right)\:\:\:...\left({iii}\right) \\ $$$$\:\:\:\:\:\:\:\:−\mu\left(\mathrm{1}−{r}\right)=\rho\:\:\:\:\:\:\:\:\:\:\:\:...\left({iv}\right) \\ $$$${Also}\:\:\:\mid{a}\mid{p}=\mid{c}\mid\left(\mathrm{1}−{r}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mid{b}\mid{q}=\mid{a}\mid\left(\mathrm{1}−{p}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mid{c}\mid{r}=\mid{b}\mid\left(\mathrm{1}−{q}\right) \\ $$$${And}\:{since}\:\: \\ $$$$\:\:\:\:\:\:\:\:\mid{a}\mid{p}+\mid{b}\mid{q}=\mid{a}\mid \\ $$$$\:\:\:\:\:\:\:\:\mid{b}\mid{q}+\mid{c}\mid{r}=\mid{b}\mid \\ $$$$\:\:\:\:\:\:\:\:\mid{c}\mid{r}+\mid{a}\mid{p}=\mid{c}\mid \\ $$$${if}\:{we}\:{let}\:\:\mid{s}\mid=\mid{a}\mid+\mid{b}\mid+\mid{c}\mid \\ $$$$\Rightarrow\:\mid{a}\mid{p}=\mid{s}\mid−\mid{b}\mid\:,\:\mid{b}\mid{q}=\mid{s}\mid−\mid{c}\mid,\:\mid{c}\mid{r}=\mid{s}\mid−\mid{a}\mid \\ $$$$\mathcal{N}{ow}\:{from}\:\left({i}\right)\&\left({ii}\right) \\ $$$$\:\:\mathrm{1}−\lambda=\mu\left(\mathrm{1}−{r}\right) \\ $$$$\:\:\:\:\:\:\lambda{q}=\mu\left({r}−\mathrm{1}\right) \\ $$$$\Rightarrow\:\:\lambda−\mathrm{1}=\lambda{q} \\ $$$$\Rightarrow\:\:\lambda=\frac{\mathrm{1}}{\mathrm{1}−{q}}=\frac{\mathrm{1}}{\mathrm{1}−\frac{\mid{s}\mid−\mid{c}\mid}{\mid{b}\mid}}=\frac{\mid{b}\mid}{\mid{b}\mid+\mid{c}\mid−\mid{s}\mid} \\ $$$$\:\:\:\:\:\mu=\frac{\mathrm{1}−\lambda}{\mathrm{1}−{r}}=\frac{\left(\frac{\mid{c}\mid−\mid{s}\mid}{\mid{b}\mid+\mid{c}\mid−\mid{s}\mid}\right)}{\mathrm{1}−\frac{\mid{s}\mid−\mid{a}\mid}{\mid{c}\mid}} \\ $$$$\Rightarrow\:\mu=\frac{\mid{c}\mid\left(\mid{c}\mid−\mid{s}\mid\right)}{\left(\mid{b}\mid+\mid{c}\mid−\mid{s}\mid\right)\left(\mid{c}\mid+\mid{a}\mid−\mid{s}\mid\right)} \\ $$$${OG}_{\mathrm{1}} =\lambda\left({a}+{qb}\right)={a}+\mu\left(\mathrm{1}−{r}\right){c} \\ $$$$\:\:\:=\frac{\mid{b}\mid}{\mid{b}\mid+\mid{c}\mid−\mid{s}\mid}\left[{a}+\left(\frac{\mid{s}\mid−\mid{c}\mid}{\mid{b}\mid}\right){b}\right] \\ $$$${OG}_{\mathrm{2}} ={a}−\mu\left(\mathrm{1}−{r}\right)\left({a}+{b}\right) \\ $$$$\:\:\:\:\:\:\:={a}−\frac{\mid{c}\mid\left(\mid{c}\mid−\mid{s}\mid\right)\left(\mathrm{1}−\frac{\mid{s}\mid−\mid{a}\mid}{\mid{c}\mid}\right)\left({a}+{b}\right)}{\left(\mid{b}\mid+\mid{c}\mid−\mid{s}\mid\right)\left(\mid{c}\mid+\mid{a}\mid−\mid{s}\mid\right)} \\ $$$$\:\:\:\:={a}−\frac{\left(\mid{c}\mid−\mid{s}\mid\right)\left({a}+{b}\right)}{\mid{b}\mid+\mid{c}\mid−\mid{s}\mid} \\ $$$${OG}_{\mathrm{2}} =\frac{\mid{b}\mid}{\mid{b}\mid+\mid{c}\mid−\mid{s}\mid}\left[{a}+\left(\frac{\mid{s}\mid−\mid{c}\mid}{\mid{b}\mid}\right){b}\right] \\ $$$$\Rightarrow\:\:\:{OG}_{\mathrm{2}} ={OG}_{\mathrm{1}} \\ $$$${hence}\:{AD},\:{BE},\:{CF}\:\:{are}\:{concurrent}. \\ $$

Commented by MJS last updated on 20/Jul/19

great! as I mentioned before, your thinking  is very different from mine, always interesting  to follow your paths to the same results

$$\mathrm{great}!\:\mathrm{as}\:\mathrm{I}\:\mathrm{mentioned}\:\mathrm{before},\:\mathrm{your}\:\mathrm{thinking} \\ $$$$\mathrm{is}\:\mathrm{very}\:\mathrm{different}\:\mathrm{from}\:\mathrm{mine},\:\mathrm{always}\:\mathrm{interesting} \\ $$$$\mathrm{to}\:\mathrm{follow}\:\mathrm{your}\:\mathrm{paths}\:\mathrm{to}\:\mathrm{the}\:\mathrm{same}\:\mathrm{results} \\ $$

Commented by mr W last updated on 20/Jul/19

nice proof sir! this is what i prefered  and expected.  i knew you would change to the vector   method as i saw your previous post sir.  i started last evening before going sleep  also with similar vector method, trying  to use perp dot product, but today i had  no time to finish it. besides i′m not  such familiar with vector operations  and so  i′ll need some more time. now  i can study your solution and learn   from it.  because it′s so interesting to see that   we had very similar thoughts and  use even some identical symbols, i′m  showing you a page of my trying  last evening.

$${nice}\:{proof}\:{sir}!\:{this}\:{is}\:{what}\:{i}\:{prefered} \\ $$$${and}\:{expected}. \\ $$$${i}\:{knew}\:{you}\:{would}\:{change}\:{to}\:{the}\:{vector}\: \\ $$$${method}\:{as}\:{i}\:{saw}\:{your}\:{previous}\:{post}\:{sir}. \\ $$$${i}\:{started}\:{last}\:{evening}\:{before}\:{going}\:{sleep} \\ $$$${also}\:{with}\:{similar}\:{vector}\:{method},\:{trying} \\ $$$${to}\:{use}\:{perp}\:{dot}\:{product},\:{but}\:{today}\:{i}\:{had} \\ $$$${no}\:{time}\:{to}\:{finish}\:{it}.\:{besides}\:{i}'{m}\:{not} \\ $$$${such}\:{familiar}\:{with}\:{vector}\:{operations} \\ $$$${and}\:{so}\:\:{i}'{ll}\:{need}\:{some}\:{more}\:{time}.\:{now} \\ $$$${i}\:{can}\:{study}\:{your}\:{solution}\:{and}\:{learn}\: \\ $$$${from}\:{it}. \\ $$$${because}\:{it}'{s}\:{so}\:{interesting}\:{to}\:{see}\:{that}\: \\ $$$${we}\:{had}\:{very}\:{similar}\:{thoughts}\:{and} \\ $$$${use}\:{even}\:{some}\:{identical}\:{symbols},\:{i}'{m} \\ $$$${showing}\:{you}\:{a}\:{page}\:{of}\:{my}\:{trying} \\ $$$${last}\:{evening}. \\ $$

Commented by mr W last updated on 20/Jul/19

Commented by ajfour last updated on 20/Jul/19

Indeed Sir, consider my solution  as yours. Well begun is half done!

$${Indeed}\:{Sir},\:{consider}\:{my}\:{solution} \\ $$$${as}\:{yours}.\:{Well}\:{begun}\:{is}\:{half}\:{done}! \\ $$

Commented by mr W last updated on 20/Jul/19

thank you sir! concerning vector  method i want to learn from you.

$${thank}\:{you}\:{sir}!\:{concerning}\:{vector} \\ $$$${method}\:{i}\:{want}\:{to}\:{learn}\:{from}\:{you}. \\ $$

Answered by MJS last updated on 20/Jul/19

it′s all coordinate method with intersecting  the circle with lines and lines with lines  I don′t have the nerves to type all the work  sorry for that    a=∣BC∣  b=∣CA∣  c=∣AB∣  δ=(√((a+b+c)(−a+b+c)(a−b+c)(a+b−c)))  A′= ((((a^2 −b^2 −3c^2 )/(6c))),((−(δ/(6c)))) )  B′= ((((a^2 −b^2 +3c^2 )/(6c))),((−(δ/(6c)))) )  C′= ((((−a^2 +b^2 )/(3c))),((δ/(3c))) )  r_I =(δ/(2(a+b+c)))  ⇒ I′= (((((a−b)(a+b−3c))/(6c))),((((−a−b+2c)δ)/(6c(a+b+c)))) )  let I= ((0),(0) )  ⇒  A= ((((a−b−c)/2)),((−(δ/(2(a+b+c))))) )  B= ((((a−b+c)/2)),((−(δ/(2(a+b+c))))) )  C= (((((a+b−c)/2)×((−a+b)/c))),(((δ/(2(a+b+c)))×((a+b)/c))) )  ⇒  D= (((((−a+b+c)(a−b+c)(a+b−c))/(4ac))),((((a^2 −b^2 +c^2 )δ)/(4ac(a+b+c)))) )  E= (((−(((−a+b+c)(a−b+c)(a+b−c))/(4bc)))),((((−a^2 +b^2 +c^2 )δ)/(4bc(a+b+c)))) )  F= ((0),((−(δ/(2(a+b+c))))) )  ⇒ AD∩BE∩CF=G  G= (((((a−b)(−a+b+c)(a−b+c)(a+b−c))/(2c(a^2 +b^2 +c^2 −2(ab+bc+ca))))),((((a^3 +b^3 −2c^3 −(a+b)(ab−c^2 ))δ)/(2c(a+b+c)(a^2 +b^2 +c^2 −2(ab+bc+ca))))) )    ∣AE∣=∣AF∣=((−a+b+c)/2)  ∣BD∣=∣BF∣=((a−b+c)/2)  ∣CD∣=∣CE∣=((a+b−c)/2)  ∣AD∣=(1/2)(√(((−a+b+c)(a(a+b+c)−2(b−c)^2 ))/a))  ∣BE∣=(1/2)(√(((a−b+c)(b(a+b+c)−2(c−a)^2 ))/b))  ∣CF∣=(1/2)(√(((a+b−c)(c(a+b+c)−2(a−b)^2 ))/c))

$$\mathrm{it}'\mathrm{s}\:\mathrm{all}\:\mathrm{coordinate}\:\mathrm{method}\:\mathrm{with}\:\mathrm{intersecting} \\ $$$$\mathrm{the}\:\mathrm{circle}\:\mathrm{with}\:\mathrm{lines}\:\mathrm{and}\:\mathrm{lines}\:\mathrm{with}\:\mathrm{lines} \\ $$$$\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{have}\:\mathrm{the}\:\mathrm{nerves}\:\mathrm{to}\:\mathrm{type}\:\mathrm{all}\:\mathrm{the}\:\mathrm{work} \\ $$$$\mathrm{sorry}\:\mathrm{for}\:\mathrm{that} \\ $$$$ \\ $$$${a}=\mid{BC}\mid\:\:{b}=\mid{CA}\mid\:\:{c}=\mid{AB}\mid \\ $$$$\delta=\sqrt{\left({a}+{b}+{c}\right)\left(−{a}+{b}+{c}\right)\left({a}−{b}+{c}\right)\left({a}+{b}−{c}\right)} \\ $$$${A}'=\begin{pmatrix}{\frac{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} −\mathrm{3}{c}^{\mathrm{2}} }{\mathrm{6}{c}}}\\{−\frac{\delta}{\mathrm{6}{c}}}\end{pmatrix}\:\:{B}'=\begin{pmatrix}{\frac{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} +\mathrm{3}{c}^{\mathrm{2}} }{\mathrm{6}{c}}}\\{−\frac{\delta}{\mathrm{6}{c}}}\end{pmatrix}\:\:{C}'=\begin{pmatrix}{\frac{−{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{\mathrm{3}{c}}}\\{\frac{\delta}{\mathrm{3}{c}}}\end{pmatrix} \\ $$$${r}_{{I}} =\frac{\delta}{\mathrm{2}\left({a}+{b}+{c}\right)} \\ $$$$\Rightarrow\:{I}'=\begin{pmatrix}{\frac{\left({a}−{b}\right)\left({a}+{b}−\mathrm{3}{c}\right)}{\mathrm{6}{c}}}\\{\frac{\left(−{a}−{b}+\mathrm{2}{c}\right)\delta}{\mathrm{6}{c}\left({a}+{b}+{c}\right)}}\end{pmatrix} \\ $$$$\mathrm{let}\:{I}=\begin{pmatrix}{\mathrm{0}}\\{\mathrm{0}}\end{pmatrix} \\ $$$$\Rightarrow \\ $$$${A}=\begin{pmatrix}{\frac{{a}−{b}−{c}}{\mathrm{2}}}\\{−\frac{\delta}{\mathrm{2}\left({a}+{b}+{c}\right)}}\end{pmatrix}\:\:{B}=\begin{pmatrix}{\frac{{a}−{b}+{c}}{\mathrm{2}}}\\{−\frac{\delta}{\mathrm{2}\left({a}+{b}+{c}\right)}}\end{pmatrix}\:\:{C}=\begin{pmatrix}{\frac{{a}+{b}−{c}}{\mathrm{2}}×\frac{−{a}+{b}}{{c}}}\\{\frac{\delta}{\mathrm{2}\left({a}+{b}+{c}\right)}×\frac{{a}+{b}}{{c}}}\end{pmatrix} \\ $$$$\Rightarrow \\ $$$${D}=\begin{pmatrix}{\frac{\left(−{a}+{b}+{c}\right)\left({a}−{b}+{c}\right)\left({a}+{b}−{c}\right)}{\mathrm{4}{ac}}}\\{\frac{\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)\delta}{\mathrm{4}{ac}\left({a}+{b}+{c}\right)}}\end{pmatrix} \\ $$$${E}=\begin{pmatrix}{−\frac{\left(−{a}+{b}+{c}\right)\left({a}−{b}+{c}\right)\left({a}+{b}−{c}\right)}{\mathrm{4}{bc}}}\\{\frac{\left(−{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)\delta}{\mathrm{4}{bc}\left({a}+{b}+{c}\right)}}\end{pmatrix} \\ $$$${F}=\begin{pmatrix}{\mathrm{0}}\\{−\frac{\delta}{\mathrm{2}\left({a}+{b}+{c}\right)}}\end{pmatrix} \\ $$$$\Rightarrow\:{AD}\cap{BE}\cap{CF}={G} \\ $$$${G}=\begin{pmatrix}{\frac{\left({a}−{b}\right)\left(−{a}+{b}+{c}\right)\left({a}−{b}+{c}\right)\left({a}+{b}−{c}\right)}{\mathrm{2}{c}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} −\mathrm{2}\left({ab}+{bc}+{ca}\right)\right)}}\\{\frac{\left({a}^{\mathrm{3}} +{b}^{\mathrm{3}} −\mathrm{2}{c}^{\mathrm{3}} −\left({a}+{b}\right)\left({ab}−{c}^{\mathrm{2}} \right)\right)\delta}{\mathrm{2}{c}\left({a}+{b}+{c}\right)\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} −\mathrm{2}\left({ab}+{bc}+{ca}\right)\right)}}\end{pmatrix} \\ $$$$ \\ $$$$\mid{AE}\mid=\mid{AF}\mid=\frac{−{a}+{b}+{c}}{\mathrm{2}} \\ $$$$\mid{BD}\mid=\mid{BF}\mid=\frac{{a}−{b}+{c}}{\mathrm{2}} \\ $$$$\mid{CD}\mid=\mid{CE}\mid=\frac{{a}+{b}−{c}}{\mathrm{2}} \\ $$$$\mid{AD}\mid=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\frac{\left(−{a}+{b}+{c}\right)\left({a}\left({a}+{b}+{c}\right)−\mathrm{2}\left({b}−{c}\right)^{\mathrm{2}} \right)}{{a}}} \\ $$$$\mid{BE}\mid=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\frac{\left({a}−{b}+{c}\right)\left({b}\left({a}+{b}+{c}\right)−\mathrm{2}\left({c}−{a}\right)^{\mathrm{2}} \right)}{{b}}} \\ $$$$\mid{CF}\mid=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\frac{\left({a}+{b}−{c}\right)\left({c}\left({a}+{b}+{c}\right)−\mathrm{2}\left({a}−{b}\right)^{\mathrm{2}} \right)}{{c}}} \\ $$

Commented by ajfour last updated on 20/Jul/19

Great Sir, please view my  vector treatment!

$${Great}\:{Sir},\:{please}\:{view}\:{my} \\ $$$${vector}\:{treatment}! \\ $$

Commented by mr W last updated on 20/Jul/19

how impressed to see how you master  the coordinate method in such a  perfection!

$${how}\:{impressed}\:{to}\:{see}\:{how}\:{you}\:{master} \\ $$$${the}\:{coordinate}\:{method}\:{in}\:{such}\:{a} \\ $$$${perfection}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com