Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 6457 by sanusihammed last updated on 27/Jun/16

Solve.  y^(′′)  − 4y′ + 4y  =  sin2x

$${Solve}. \\ $$$${y}^{''} \:−\:\mathrm{4}{y}'\:+\:\mathrm{4}{y}\:\:=\:\:{sin}\mathrm{2}{x}\: \\ $$

Answered by nburiburu last updated on 27/Jun/16

homogeneus solution:  r^2 −4r+4=0 ⇒r_1 =r_2 =2 ⇒B_h ={e^(2x) , xe^(2x) }  y_h =c_1 e^(2x) +c_2 xe^(2x)   particular:  g(x)=sin2x ⇒B_p ={cos2x,sin2x}  y_p =Acos2x +Bsin2x  y_p ′=−2Asin2x+2Bcos2x  y_p ′′=−4Acos2x−4Bsin2x  seeing cos2x and sin2x separately  −4A −4(2B)+4(A)=0  −4B −4(−2A)+4(B)=1    B=0 ; A=(1/8)  y_p =(1/8)cos 2x  y= y_h +y_p =c_1 e^(2x) +c_2 xe^(2x) +(1/8)cos 2x

$${homogeneus}\:{solution}: \\ $$$${r}^{\mathrm{2}} −\mathrm{4}{r}+\mathrm{4}=\mathrm{0}\:\Rightarrow{r}_{\mathrm{1}} ={r}_{\mathrm{2}} =\mathrm{2}\:\Rightarrow{B}_{{h}} =\left\{{e}^{\mathrm{2}{x}} ,\:{xe}^{\mathrm{2}{x}} \right\} \\ $$$${y}_{{h}} ={c}_{\mathrm{1}} {e}^{\mathrm{2}{x}} +{c}_{\mathrm{2}} {xe}^{\mathrm{2}{x}} \\ $$$${particular}: \\ $$$${g}\left({x}\right)={sin}\mathrm{2}{x}\:\Rightarrow{B}_{{p}} =\left\{{cos}\mathrm{2}{x},{sin}\mathrm{2}{x}\right\} \\ $$$${y}_{{p}} ={Acos}\mathrm{2}{x}\:+{Bsin}\mathrm{2}{x} \\ $$$${y}_{{p}} '=−\mathrm{2}{Asin}\mathrm{2}{x}+\mathrm{2}{Bcos}\mathrm{2}{x} \\ $$$${y}_{{p}} ''=−\mathrm{4}{Acos}\mathrm{2}{x}−\mathrm{4}{Bsin}\mathrm{2}{x} \\ $$$${seeing}\:{cos}\mathrm{2}{x}\:{and}\:{sin}\mathrm{2}{x}\:{separately} \\ $$$$−\mathrm{4}{A}\:−\mathrm{4}\left(\mathrm{2}{B}\right)+\mathrm{4}\left({A}\right)=\mathrm{0} \\ $$$$−\mathrm{4}{B}\:−\mathrm{4}\left(−\mathrm{2}{A}\right)+\mathrm{4}\left({B}\right)=\mathrm{1} \\ $$$$ \\ $$$${B}=\mathrm{0}\:;\:{A}=\frac{\mathrm{1}}{\mathrm{8}} \\ $$$${y}_{{p}} =\frac{\mathrm{1}}{\mathrm{8}}{cos}\:\mathrm{2}{x} \\ $$$${y}=\:{y}_{{h}} +{y}_{{p}} ={c}_{\mathrm{1}} {e}^{\mathrm{2}{x}} +{c}_{\mathrm{2}} {xe}^{\mathrm{2}{x}} +\frac{\mathrm{1}}{\mathrm{8}}{cos}\:\mathrm{2}{x} \\ $$$$ \\ $$$$ \\ $$

Commented by sanusihammed last updated on 27/Jun/16

Wow thanks.

$${Wow}\:{thanks}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com