Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 64557 by LPM last updated on 19/Jul/19

Commented by LPM last updated on 19/Jul/19

area of △ DBC

$$\mathrm{area}\:\mathrm{of}\:\bigtriangleup\:\mathrm{DBC}\: \\ $$$$ \\ $$

Commented by Tony Lin last updated on 19/Jul/19

∠AEB=120°⇒∠EBA=30°  ∠EBC=60°⇒∠ABC=90°  ∴△ABC is 30°-60°-90° triangle  ⇒BC=(4/(√3))  ∵△EBC is equilateral triangle and     △AEB is isosceles triangle  ∴AE=EB=EC=(4/(√3))  ∠AED=60°⇒∠ADE=75°  ((AE)/(sin75°))=((DE)/(sin45°))  ((4/(√3))/(((√6)+(√2))/4))=((DE)/((√2)/2))  ⇒DE=((4(3−(√3)))/3)  area of △DBC  =△DEC+△EBC  =(1/2)×DE×EC×sin∠DEC+((√3)/4)×EC^2   =(1/2)×((4(3−(√3)))/3)×(4/(√3))×((√3)/2)+((√3)/4)×((4/(√3)))^2   =4

$$\angle{AEB}=\mathrm{120}°\Rightarrow\angle{EBA}=\mathrm{30}° \\ $$$$\angle{EBC}=\mathrm{60}°\Rightarrow\angle{ABC}=\mathrm{90}° \\ $$$$\therefore\bigtriangleup{ABC}\:{is}\:\mathrm{30}°-\mathrm{60}°-\mathrm{90}°\:{triangle} \\ $$$$\Rightarrow{BC}=\frac{\mathrm{4}}{\sqrt{\mathrm{3}}} \\ $$$$\because\bigtriangleup{EBC}\:{is}\:{equilateral}\:{triangle}\:{and} \\ $$$$\:\:\:\bigtriangleup{AEB}\:{is}\:{isosceles}\:{triangle} \\ $$$$\therefore{AE}={EB}={EC}=\frac{\mathrm{4}}{\sqrt{\mathrm{3}}} \\ $$$$\angle{AED}=\mathrm{60}°\Rightarrow\angle{ADE}=\mathrm{75}° \\ $$$$\frac{{AE}}{{sin}\mathrm{75}°}=\frac{{DE}}{{sin}\mathrm{45}°} \\ $$$$\frac{\frac{\mathrm{4}}{\sqrt{\mathrm{3}}}}{\frac{\sqrt{\mathrm{6}}+\sqrt{\mathrm{2}}}{\mathrm{4}}}=\frac{{DE}}{\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}} \\ $$$$\Rightarrow{DE}=\frac{\mathrm{4}\left(\mathrm{3}−\sqrt{\mathrm{3}}\right)}{\mathrm{3}} \\ $$$${area}\:{of}\:\bigtriangleup{DBC} \\ $$$$=\bigtriangleup{DEC}+\bigtriangleup{EBC} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}×{DE}×{EC}×{sin}\angle{DEC}+\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}×{EC}^{\mathrm{2}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{4}\left(\mathrm{3}−\sqrt{\mathrm{3}}\right)}{\mathrm{3}}×\frac{\mathrm{4}}{\sqrt{\mathrm{3}}}×\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}+\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}×\left(\frac{\mathrm{4}}{\sqrt{\mathrm{3}}}\right)^{\mathrm{2}} \\ $$$$=\mathrm{4} \\ $$

Commented by LPM last updated on 19/Jul/19

good

$$\mathrm{good} \\ $$

Answered by Kunal12588 last updated on 19/Jul/19

see ABC  tan 60° = (4/(BC))  ⇒BC=(4/3)(√3)  sin 60°=(4/(AC))  AC=(8/3)(√3)  BE=BC=EC=(4/3)(√3)  AE=AC−EC=(8/3)(√3)−(4/3)(√3)=(4/3)(√3)  ∵ AE=EC=(4/3)(√3)  ∴ ∠EBA=30°  ∠BDA=180°−75°−30°=75°  ∵∠BDA=∠DAB  AB=BD=4  DE=BD−BE=4−(4/3)(√3)=((4(3−(√3)))/3)=((4(√3)((√3)−1))/3)  ar(BCE)=((√3)/4)(BC)^2 =((√3)/4)(((4(√3))/3))^2 =((4(√3))/3)  ar(CDE)=(1/2)×EC×DE sin(∠DEC)  =(1/2)×((4(√3))/3)×((4(√3)((√3)−1))/3)×sin(180−60)  =(1/2)×((4(√3))/3)×((4(√3)((√3)−1))/3)×((√3)/2)  =((4(√3)((√3)−1))/3)  ar(DBC)=ar(CDE)+ar(BCE)  =((4(√3)((√3)−1))/3)+((4(√3))/3)  =((4(√3))/3)((√3))  ar(DBC)=4

$${see}\:{ABC} \\ $$$${tan}\:\mathrm{60}°\:=\:\frac{\mathrm{4}}{{BC}} \\ $$$$\Rightarrow{BC}=\frac{\mathrm{4}}{\mathrm{3}}\sqrt{\mathrm{3}} \\ $$$${sin}\:\mathrm{60}°=\frac{\mathrm{4}}{{AC}} \\ $$$${AC}=\frac{\mathrm{8}}{\mathrm{3}}\sqrt{\mathrm{3}} \\ $$$${BE}={BC}={EC}=\frac{\mathrm{4}}{\mathrm{3}}\sqrt{\mathrm{3}} \\ $$$${AE}={AC}−{EC}=\frac{\mathrm{8}}{\mathrm{3}}\sqrt{\mathrm{3}}−\frac{\mathrm{4}}{\mathrm{3}}\sqrt{\mathrm{3}}=\frac{\mathrm{4}}{\mathrm{3}}\sqrt{\mathrm{3}} \\ $$$$\because\:{AE}={EC}=\frac{\mathrm{4}}{\mathrm{3}}\sqrt{\mathrm{3}} \\ $$$$\therefore\:\angle{EBA}=\mathrm{30}° \\ $$$$\angle{BDA}=\mathrm{180}°−\mathrm{75}°−\mathrm{30}°=\mathrm{75}° \\ $$$$\because\angle{BDA}=\angle{DAB} \\ $$$${AB}={BD}=\mathrm{4} \\ $$$${DE}={BD}−{BE}=\mathrm{4}−\frac{\mathrm{4}}{\mathrm{3}}\sqrt{\mathrm{3}}=\frac{\mathrm{4}\left(\mathrm{3}−\sqrt{\mathrm{3}}\right)}{\mathrm{3}}=\frac{\mathrm{4}\sqrt{\mathrm{3}}\left(\sqrt{\mathrm{3}}−\mathrm{1}\right)}{\mathrm{3}} \\ $$$${ar}\left({BCE}\right)=\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}\left({BC}\right)^{\mathrm{2}} =\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}\left(\frac{\mathrm{4}\sqrt{\mathrm{3}}}{\mathrm{3}}\right)^{\mathrm{2}} =\frac{\mathrm{4}\sqrt{\mathrm{3}}}{\mathrm{3}} \\ $$$${ar}\left({CDE}\right)=\frac{\mathrm{1}}{\mathrm{2}}×{EC}×{DE}\:{sin}\left(\angle{DEC}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{4}\sqrt{\mathrm{3}}}{\mathrm{3}}×\frac{\mathrm{4}\sqrt{\mathrm{3}}\left(\sqrt{\mathrm{3}}−\mathrm{1}\right)}{\mathrm{3}}×{sin}\left(\mathrm{180}−\mathrm{60}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{4}\sqrt{\mathrm{3}}}{\mathrm{3}}×\frac{\mathrm{4}\sqrt{\mathrm{3}}\left(\sqrt{\mathrm{3}}−\mathrm{1}\right)}{\mathrm{3}}×\frac{\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$$=\frac{\mathrm{4}\sqrt{\mathrm{3}}\left(\sqrt{\mathrm{3}}−\mathrm{1}\right)}{\mathrm{3}} \\ $$$${ar}\left({DBC}\right)={ar}\left({CDE}\right)+{ar}\left({BCE}\right) \\ $$$$=\frac{\mathrm{4}\sqrt{\mathrm{3}}\left(\sqrt{\mathrm{3}}−\mathrm{1}\right)}{\mathrm{3}}+\frac{\mathrm{4}\sqrt{\mathrm{3}}}{\mathrm{3}} \\ $$$$=\frac{\mathrm{4}\sqrt{\mathrm{3}}}{\mathrm{3}}\left(\sqrt{\mathrm{3}}\right) \\ $$$${ar}\left({DBC}\right)=\mathrm{4} \\ $$$$ \\ $$

Commented by LPM last updated on 19/Jul/19

good

$$\mathrm{good} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com