Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 64332 by Chi Mes Try last updated on 16/Jul/19

∫_(π/6) ^(π/3)   (1/(sin 2x)) dx =

$$\underset{\pi/\mathrm{6}} {\overset{\pi/\mathrm{3}} {\int}}\:\:\frac{\mathrm{1}}{\mathrm{sin}\:\mathrm{2}{x}}\:{dx}\:= \\ $$

Commented by mathmax by abdo last updated on 16/Jul/19

let A =∫_(π/6) ^(π/3)  (dx/(sin(2x))) changement 2x=t give   A =∫_(π/3) ^((2π)/3)    (dt/(2sint)) =_(tan((t/2))=u)   (1/2) ∫_(1/(√3)) ^(√3)    ((2du)/((1+u^2 )((2u)/(1+u^2 )))) =(1/2) ∫_(1/(√3)) ^(√3)  (du/u)  =(1/2)[ln∣u∣]_(1/(√3)) ^(√3)   =(1/2){ln((√3))+ln((√3))} =((ln(3))/2)  A =((ln(3))/2) .

$${let}\:{A}\:=\int_{\frac{\pi}{\mathrm{6}}} ^{\frac{\pi}{\mathrm{3}}} \:\frac{{dx}}{{sin}\left(\mathrm{2}{x}\right)}\:{changement}\:\mathrm{2}{x}={t}\:{give}\: \\ $$$${A}\:=\int_{\frac{\pi}{\mathrm{3}}} ^{\frac{\mathrm{2}\pi}{\mathrm{3}}} \:\:\:\frac{{dt}}{\mathrm{2}{sint}}\:=_{{tan}\left(\frac{{t}}{\mathrm{2}}\right)={u}} \:\:\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\frac{\mathrm{1}}{\sqrt{\mathrm{3}}}} ^{\sqrt{\mathrm{3}}} \:\:\:\frac{\mathrm{2}{du}}{\left(\mathrm{1}+{u}^{\mathrm{2}} \right)\frac{\mathrm{2}{u}}{\mathrm{1}+{u}^{\mathrm{2}} }}\:=\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\frac{\mathrm{1}}{\sqrt{\mathrm{3}}}} ^{\sqrt{\mathrm{3}}} \:\frac{{du}}{{u}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left[{ln}\mid{u}\mid\right]_{\frac{\mathrm{1}}{\sqrt{\mathrm{3}}}} ^{\sqrt{\mathrm{3}}} \:\:=\frac{\mathrm{1}}{\mathrm{2}}\left\{{ln}\left(\sqrt{\mathrm{3}}\right)+{ln}\left(\sqrt{\mathrm{3}}\right)\right\}\:=\frac{{ln}\left(\mathrm{3}\right)}{\mathrm{2}} \\ $$$${A}\:=\frac{{ln}\left(\mathrm{3}\right)}{\mathrm{2}}\:. \\ $$

Commented by Tony Lin last updated on 17/Jul/19

∫_(π/6) ^(π/3) (1/(sin2x))dx  =∫_(π/6) ^(π/3) csc2xdx  =−(1/2)ln∣csc2x+cot2x∣∣_(π/6) ^(π/3)   =−(1/2)ln∣cotx∣_(π/6) ^(π/3)   =−((ln((1/(√3))))/2)+((ln((√3)))/2)  =((ln3)/2)

$$\int_{\frac{\pi}{\mathrm{6}}} ^{\frac{\pi}{\mathrm{3}}} \frac{\mathrm{1}}{{sin}\mathrm{2}{x}}{dx} \\ $$$$=\int_{\frac{\pi}{\mathrm{6}}} ^{\frac{\pi}{\mathrm{3}}} {csc}\mathrm{2}{xdx} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}}{ln}\mid{csc}\mathrm{2}{x}+{cot}\mathrm{2}{x}\mid\mid_{\frac{\pi}{\mathrm{6}}} ^{\frac{\pi}{\mathrm{3}}} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}}{ln}\mid{cotx}\mid_{\frac{\pi}{\mathrm{6}}} ^{\frac{\pi}{\mathrm{3}}} \\ $$$$=−\frac{{ln}\left(\frac{\mathrm{1}}{\sqrt{\mathrm{3}}}\right)}{\mathrm{2}}+\frac{{ln}\left(\sqrt{\mathrm{3}}\right)}{\mathrm{2}} \\ $$$$=\frac{{ln}\mathrm{3}}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com