Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 64227 by Tony Lin last updated on 16/Jul/19

∫(1/(x^6 +x^3 ))dx=?

$$\int\frac{\mathrm{1}}{{x}^{\mathrm{6}} +{x}^{\mathrm{3}} }{dx}=? \\ $$

Answered by ajfour last updated on 16/Jul/19

I=∫(dx/(x^3 (1+x^3 )))    (1/(x^3 (1+x^3 )))=(A/x)+(B/x^2 )+(C/x^3 )+(D/(1+x))+((Ex+F)/(x^2 −x+1))  ⇒ 1=(1+x^3 )(Ax^2 +Bx+C)               +Dx^3 (x^2 −x+1)+(Ex+F)x^3 (1+x)   x=0 ⇒ C=1    x=−1 ⇒ D=−(1/3)  ⇒  A+D+E=0         B−D+E+F =0         C+D+F =0         A=0, B=0  ⇒   E=(1/3), F=−(2/3)  ⇒ I=∫ (dx/x^3 )−(1/3)∫(dx/(1+x))+(1/3)∫ (((x−2)dx)/(x^2 −x+1))  =−(1/(2x^2 ))−(1/3)ln (1+x)+(1/6)ln (x^2 −x+1)           −∫(dx/((x−(1/2))^2 +(((√3)/2))^2 ))  I=−(1/(2x^2 ))−(1/3)ln (1+x)+(1/6)ln (x^2 −x+1)         −(2/(√3))tan^(−1) (((2x−1)/(√3)))+c .

$${I}=\int\frac{{dx}}{{x}^{\mathrm{3}} \left(\mathrm{1}+{x}^{\mathrm{3}} \right)} \\ $$$$\:\:\frac{\mathrm{1}}{{x}^{\mathrm{3}} \left(\mathrm{1}+{x}^{\mathrm{3}} \right)}=\frac{{A}}{{x}}+\frac{{B}}{{x}^{\mathrm{2}} }+\frac{{C}}{{x}^{\mathrm{3}} }+\frac{{D}}{\mathrm{1}+{x}}+\frac{{Ex}+{F}}{{x}^{\mathrm{2}} −{x}+\mathrm{1}} \\ $$$$\Rightarrow\:\mathrm{1}=\left(\mathrm{1}+{x}^{\mathrm{3}} \right)\left({Ax}^{\mathrm{2}} +{Bx}+{C}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:+{Dx}^{\mathrm{3}} \left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)+\left({Ex}+{F}\right){x}^{\mathrm{3}} \left(\mathrm{1}+{x}\right) \\ $$$$\:{x}=\mathrm{0}\:\Rightarrow\:{C}=\mathrm{1}\: \\ $$$$\:{x}=−\mathrm{1}\:\Rightarrow\:{D}=−\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\Rightarrow\:\:{A}+{D}+{E}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:{B}−{D}+{E}+{F}\:=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:{C}+{D}+{F}\:=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:{A}=\mathrm{0},\:{B}=\mathrm{0} \\ $$$$\Rightarrow\:\:\:{E}=\frac{\mathrm{1}}{\mathrm{3}},\:{F}=−\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\Rightarrow\:{I}=\int\:\frac{{dx}}{{x}^{\mathrm{3}} }−\frac{\mathrm{1}}{\mathrm{3}}\int\frac{{dx}}{\mathrm{1}+{x}}+\frac{\mathrm{1}}{\mathrm{3}}\int\:\frac{\left({x}−\mathrm{2}\right){dx}}{{x}^{\mathrm{2}} −{x}+\mathrm{1}} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}{x}^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{3}}\mathrm{ln}\:\left(\mathrm{1}+{x}\right)+\frac{\mathrm{1}}{\mathrm{6}}\mathrm{ln}\:\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:\:\:−\int\frac{{dx}}{\left({x}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{2}} } \\ $$$${I}=−\frac{\mathrm{1}}{\mathrm{2}{x}^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{3}}\mathrm{ln}\:\left(\mathrm{1}+{x}\right)+\frac{\mathrm{1}}{\mathrm{6}}\mathrm{ln}\:\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:−\frac{\mathrm{2}}{\sqrt{\mathrm{3}}}\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{2}{x}−\mathrm{1}}{\sqrt{\mathrm{3}}}\right)+{c}\:. \\ $$

Commented by Tony Lin last updated on 16/Jul/19

thanks sir

$${thanks}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com