Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 64159 by mathmax by abdo last updated on 14/Jul/19

calculate  ∫_0 ^1   (dx/(3+2^x ))

$${calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dx}}{\mathrm{3}+\mathrm{2}^{{x}} } \\ $$

Commented by turbo msup by abdo last updated on 15/Jul/19

chsngement 2^x =t give e^(xln(2)) =t ⇒  xln(2)=ln(t)⇒x=((ln(t))/(ln2))  ∫_0 ^1  (dx/(3+2^x )) =∫_1 ^2   (dt/(tln2(3+t)))  =(1/(3ln2)) ∫_1 ^2 ((1/t)−(1/(3+t)))dt  =(1/(3ln2))[ln((t/(t+3)))]_1 ^2   =(1/(3ln2)){ln((2/5))−ln((1/4))}  =(1/(3ln2)){ln2−ln5+2ln2}  =(1/(3ln2)){3ln2−ln5}

$${chsngement}\:\mathrm{2}^{{x}} ={t}\:{give}\:{e}^{{xln}\left(\mathrm{2}\right)} ={t}\:\Rightarrow \\ $$$${xln}\left(\mathrm{2}\right)={ln}\left({t}\right)\Rightarrow{x}=\frac{{ln}\left({t}\right)}{{ln}\mathrm{2}} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{dx}}{\mathrm{3}+\mathrm{2}^{{x}} }\:=\int_{\mathrm{1}} ^{\mathrm{2}} \:\:\frac{{dt}}{{tln}\mathrm{2}\left(\mathrm{3}+{t}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}{ln}\mathrm{2}}\:\int_{\mathrm{1}} ^{\mathrm{2}} \left(\frac{\mathrm{1}}{{t}}−\frac{\mathrm{1}}{\mathrm{3}+{t}}\right){dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}{ln}\mathrm{2}}\left[{ln}\left(\frac{{t}}{{t}+\mathrm{3}}\right)\right]_{\mathrm{1}} ^{\mathrm{2}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}{ln}\mathrm{2}}\left\{{ln}\left(\frac{\mathrm{2}}{\mathrm{5}}\right)−{ln}\left(\frac{\mathrm{1}}{\mathrm{4}}\right)\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}{ln}\mathrm{2}}\left\{{ln}\mathrm{2}−{ln}\mathrm{5}+\mathrm{2}{ln}\mathrm{2}\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}{ln}\mathrm{2}}\left\{\mathrm{3}{ln}\mathrm{2}−{ln}\mathrm{5}\right\} \\ $$

Answered by Hope last updated on 15/Jul/19

f(x)=(1/(3+2^x ))  f(0)=(1/4)=0.25  f(1)=(1/5)=0.2  ∫_0 ^1 f(x)dx=(1/2)(0.25+0.20)×1=0.225(approx)  Tanmay is hope...

$${f}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{3}+\mathrm{2}^{{x}} } \\ $$$${f}\left(\mathrm{0}\right)=\frac{\mathrm{1}}{\mathrm{4}}=\mathrm{0}.\mathrm{25} \\ $$$${f}\left(\mathrm{1}\right)=\frac{\mathrm{1}}{\mathrm{5}}=\mathrm{0}.\mathrm{2} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right){dx}=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{0}.\mathrm{25}+\mathrm{0}.\mathrm{20}\right)×\mathrm{1}=\mathrm{0}.\mathrm{225}\left({approx}\right) \\ $$$${Tanmay}\:{is}\:{hope}... \\ $$

Commented by Hope last updated on 15/Jul/19

still hope present..i have changed my profile name  because my answer do not get accepted by a[few  so i tried to minimise  my activity in this  platform..0k goodbye

$${still}\:{hope}\:{present}..{i}\:{have}\:{changed}\:{my}\:{profile}\:{name} \\ $$$${because}\:{my}\:{answer}\:{do}\:{not}\:{get}\:{accepted}\:{by}\:{a}\left[{few}\right. \\ $$$${so}\:{i}\:{tried}\:{to}\:{minimise}\:\:{my}\:{activity}\:{in}\:{this} \\ $$$${platform}..\mathrm{0}{k}\:{goodbye} \\ $$

Commented by mathmax by abdo last updated on 15/Jul/19

sir tanmay you are wrong if you say this what s your proof   that your answer is not accepted  you are always actif in that  forum and considered....

$${sir}\:{tanmay}\:{you}\:{are}\:{wrong}\:{if}\:{you}\:{say}\:{this}\:{what}\:{s}\:{your}\:{proof}\: \\ $$$${that}\:{your}\:{answer}\:{is}\:{not}\:{accepted}\:\:{you}\:{are}\:{always}\:{actif}\:{in}\:{that} \\ $$$${forum}\:{and}\:{considered}.... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com