Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 64097 by ajfour last updated on 13/Jul/19

Commented by ajfour last updated on 13/Jul/19

Find side length s of equal sided  hexagon inscribed in ellipse of  parameters a and b.

$${Find}\:{side}\:{length}\:\boldsymbol{{s}}\:{of}\:{equal}\:{sided} \\ $$$${hexagon}\:{inscribed}\:{in}\:{ellipse}\:{of} \\ $$$${parameters}\:\boldsymbol{{a}}\:{and}\:\boldsymbol{{b}}. \\ $$

Answered by ajfour last updated on 13/Jul/19

 acos θ=(s/2)  s^2 =(a−(s/2))^2 +b^2 (1−(s^2 /(4a^2 )))  s^2 ((3/4)+(b^2 /(4a^2 )))+as−a^2 −b^2 =0  s=((−a+(√(a^2 +(a^2 +b^2 )(3+(b^2 /a^2 )))))/((1/2)(3+(b^2 /a^2 )))) .  If  a=b=r    s= r .

$$\:{a}\mathrm{cos}\:\theta=\frac{{s}}{\mathrm{2}} \\ $$$${s}^{\mathrm{2}} =\left({a}−\frac{{s}}{\mathrm{2}}\right)^{\mathrm{2}} +{b}^{\mathrm{2}} \left(\mathrm{1}−\frac{{s}^{\mathrm{2}} }{\mathrm{4}{a}^{\mathrm{2}} }\right) \\ $$$${s}^{\mathrm{2}} \left(\frac{\mathrm{3}}{\mathrm{4}}+\frac{{b}^{\mathrm{2}} }{\mathrm{4}{a}^{\mathrm{2}} }\right)+{as}−{a}^{\mathrm{2}} −{b}^{\mathrm{2}} =\mathrm{0} \\ $$$${s}=\frac{−{a}+\sqrt{{a}^{\mathrm{2}} +\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)\left(\mathrm{3}+\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\right)}}{\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{3}+\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\right)}\:. \\ $$$${If}\:\:{a}={b}={r} \\ $$$$\:\:{s}=\:{r}\:. \\ $$

Commented by mr W last updated on 13/Jul/19

��

Terms of Service

Privacy Policy

Contact: info@tinkutara.com