Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 63894 by mathmax by abdo last updated on 10/Jul/19

sove the (de) x^2 y^′  −(2x+3)y =sin(x^2 )  with y(1)=2 and  y^′ (1)=1 .

$${sove}\:{the}\:\left({de}\right)\:{x}^{\mathrm{2}} {y}^{'} \:−\left(\mathrm{2}{x}+\mathrm{3}\right){y}\:={sin}\left({x}^{\mathrm{2}} \right)\:\:{with}\:{y}\left(\mathrm{1}\right)=\mathrm{2}\:{and} \\ $$$${y}^{'} \left(\mathrm{1}\right)=\mathrm{1}\:. \\ $$

Commented by mathmax by abdo last updated on 11/Jul/19

(he) →x^2 y^′ −(2x+3)y=0 ⇒x^2 y^′  =(2x+3)y ⇒  (y^′ /y) =((2x+3)/x^2 ) =(2/x) +(3/x^2 ) ⇒ln∣y∣=2ln∣x∣−(3/x)+c ⇒  y =K x^2  e^(−(3/x))    let use mvc method   y^′  =K^′ x^2  e^(−(3/x))  +K{ 2x e^(−(3/x))  +x^2 (3/x^2 ) e^(−(3/x)) }  =K^′  x^2  e^(−(3/(x )))  +K{2x+3}e^(−(3/x))   (e) ⇒K^′ x^4  e^(−(3/x))   +Kx^2 (2x+3)e^(−(3/x))  −(2x+3)Kx^2  e^(−(3/x))  =sin(x^2 ) ⇒  K^′  x^4  e^(−(3/x))  =sin(x^2 ) ⇒K^′  =((sin(x^2 )e^(3/x) )/x^4 ) ⇒  K(x) =∫_1 ^x    ((sin(t^2 )e^(3/t) )/t^4 )dt  +λ  λ=K(1) we have y(1)=K(1)e^(−3)  ⇒K(1)=e^3 y(1) ⇒  K(x) =∫_1 ^x   ((sin(t^2 )e^(3/t) )/t^4 )dt  +2e^3  ⇒  y(x) =x^2  e^(−(3/x)) { ∫_1 ^x   ((e^(3/t)  sin(t^2 ))/t^4 )dt +2e^3 }....

$$\left({he}\right)\:\rightarrow{x}^{\mathrm{2}} {y}^{'} −\left(\mathrm{2}{x}+\mathrm{3}\right){y}=\mathrm{0}\:\Rightarrow{x}^{\mathrm{2}} {y}^{'} \:=\left(\mathrm{2}{x}+\mathrm{3}\right){y}\:\Rightarrow \\ $$$$\frac{{y}^{'} }{{y}}\:=\frac{\mathrm{2}{x}+\mathrm{3}}{{x}^{\mathrm{2}} }\:=\frac{\mathrm{2}}{{x}}\:+\frac{\mathrm{3}}{{x}^{\mathrm{2}} }\:\Rightarrow{ln}\mid{y}\mid=\mathrm{2}{ln}\mid{x}\mid−\frac{\mathrm{3}}{{x}}+{c}\:\Rightarrow \\ $$$${y}\:={K}\:{x}^{\mathrm{2}} \:{e}^{−\frac{\mathrm{3}}{{x}}} \:\:\:{let}\:{use}\:{mvc}\:{method}\: \\ $$$${y}^{'} \:={K}^{'} {x}^{\mathrm{2}} \:{e}^{−\frac{\mathrm{3}}{{x}}} \:+{K}\left\{\:\mathrm{2}{x}\:{e}^{−\frac{\mathrm{3}}{{x}}} \:+{x}^{\mathrm{2}} \frac{\mathrm{3}}{{x}^{\mathrm{2}} }\:{e}^{−\frac{\mathrm{3}}{{x}}} \right\} \\ $$$$={K}^{'} \:{x}^{\mathrm{2}} \:{e}^{−\frac{\mathrm{3}}{{x}\:}} \:+{K}\left\{\mathrm{2}{x}+\mathrm{3}\right\}{e}^{−\frac{\mathrm{3}}{{x}}} \\ $$$$\left({e}\right)\:\Rightarrow{K}^{'} {x}^{\mathrm{4}} \:{e}^{−\frac{\mathrm{3}}{{x}}} \:\:+{Kx}^{\mathrm{2}} \left(\mathrm{2}{x}+\mathrm{3}\right){e}^{−\frac{\mathrm{3}}{{x}}} \:−\left(\mathrm{2}{x}+\mathrm{3}\right){Kx}^{\mathrm{2}} \:{e}^{−\frac{\mathrm{3}}{{x}}} \:={sin}\left({x}^{\mathrm{2}} \right)\:\Rightarrow \\ $$$${K}^{'} \:{x}^{\mathrm{4}} \:{e}^{−\frac{\mathrm{3}}{{x}}} \:={sin}\left({x}^{\mathrm{2}} \right)\:\Rightarrow{K}^{'} \:=\frac{{sin}\left({x}^{\mathrm{2}} \right){e}^{\frac{\mathrm{3}}{{x}}} }{{x}^{\mathrm{4}} }\:\Rightarrow \\ $$$${K}\left({x}\right)\:=\int_{\mathrm{1}} ^{{x}} \:\:\:\frac{{sin}\left({t}^{\mathrm{2}} \right){e}^{\frac{\mathrm{3}}{{t}}} }{{t}^{\mathrm{4}} }{dt}\:\:+\lambda \\ $$$$\lambda={K}\left(\mathrm{1}\right)\:{we}\:{have}\:{y}\left(\mathrm{1}\right)={K}\left(\mathrm{1}\right){e}^{−\mathrm{3}} \:\Rightarrow{K}\left(\mathrm{1}\right)={e}^{\mathrm{3}} {y}\left(\mathrm{1}\right)\:\Rightarrow \\ $$$${K}\left({x}\right)\:=\int_{\mathrm{1}} ^{{x}} \:\:\frac{{sin}\left({t}^{\mathrm{2}} \right){e}^{\frac{\mathrm{3}}{{t}}} }{{t}^{\mathrm{4}} }{dt}\:\:+\mathrm{2}{e}^{\mathrm{3}} \:\Rightarrow \\ $$$${y}\left({x}\right)\:={x}^{\mathrm{2}} \:{e}^{−\frac{\mathrm{3}}{{x}}} \left\{\:\int_{\mathrm{1}} ^{{x}} \:\:\frac{{e}^{\frac{\mathrm{3}}{{t}}} \:{sin}\left({t}^{\mathrm{2}} \right)}{{t}^{\mathrm{4}} }{dt}\:+\mathrm{2}{e}^{\mathrm{3}} \right\}.... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com