Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 63861 by gunawan last updated on 10/Jul/19

The number of non−zero terms in the  expansion of (1+3(√2) x)^9 +(1−3(√2) x)^9  is

$$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{non}−\mathrm{zero}\:\mathrm{terms}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{expansion}\:\mathrm{of}\:\left(\mathrm{1}+\mathrm{3}\sqrt{\mathrm{2}}\:{x}\right)^{\mathrm{9}} +\left(\mathrm{1}−\mathrm{3}\sqrt{\mathrm{2}}\:{x}\right)^{\mathrm{9}} \:\mathrm{is} \\ $$

Commented by kaivan.ahmadi last updated on 10/Jul/19

even powers of x(odd terms) have nonzero coff  so  in (1+3(√2)x)^9   the sum of odd coff is  s=3(√2)+ ((9),(2) )(3(√2))^7 + ((9),(4) )(3(√2))^4 + ((9),(6) )(3(√2))^2 + ((9),(8) )(3(√2))  and in (1+3(√2)x)^9 +(1−3(√2)x)^9   the  sum  of coff  is  2s

$${even}\:{powers}\:{of}\:{x}\left({odd}\:{terms}\right)\:{have}\:{nonzero}\:{coff} \\ $$$${so} \\ $$$${in}\:\left(\mathrm{1}+\mathrm{3}\sqrt{\mathrm{2}}{x}\right)^{\mathrm{9}} \:\:{the}\:{sum}\:{of}\:{odd}\:{coff}\:{is} \\ $$$${s}=\mathrm{3}\sqrt{\mathrm{2}}+\begin{pmatrix}{\mathrm{9}}\\{\mathrm{2}}\end{pmatrix}\left(\mathrm{3}\sqrt{\mathrm{2}}\right)^{\mathrm{7}} +\begin{pmatrix}{\mathrm{9}}\\{\mathrm{4}}\end{pmatrix}\left(\mathrm{3}\sqrt{\mathrm{2}}\right)^{\mathrm{4}} +\begin{pmatrix}{\mathrm{9}}\\{\mathrm{6}}\end{pmatrix}\left(\mathrm{3}\sqrt{\mathrm{2}}\right)^{\mathrm{2}} +\begin{pmatrix}{\mathrm{9}}\\{\mathrm{8}}\end{pmatrix}\left(\mathrm{3}\sqrt{\mathrm{2}}\right) \\ $$$${and}\:{in}\:\left(\mathrm{1}+\mathrm{3}\sqrt{\mathrm{2}}{x}\right)^{\mathrm{9}} +\left(\mathrm{1}−\mathrm{3}\sqrt{\mathrm{2}}{x}\right)^{\mathrm{9}} \:\:{the}\:\:{sum} \\ $$$${of}\:{coff}\:\:{is}\:\:\mathrm{2}{s} \\ $$$$ \\ $$

Commented by mathmax by abdo last updated on 10/Jul/19

we have (1+3(√2)x)^9  +(1−3(√2))^9 =Σ_(k=0) ^9  C_9 ^k (3(√2)x)^k   +Σ_(k=0) ^9  C_9 ^k  (−1)^k (3(√2))^k  =Σ_(k=0) ^9 C_9 ^k (1+(−1)^k )(3(√2))^k  x^k   =Σ_(p=0) ^([(9/2)])  C_9 ^(2p)   2  ×2^p  3^(2p)  x^(2p)  =Σ_(p=0) ^4  C_9 ^(2p)  2^(p+1)  9^p  x^(2p)    Σ_(p=0) ^4  a_p   x^(2p)   with a_p =2^(p+1)  9^p  C_9 ^(2p)  we see that a_p ≥0 ....

$${we}\:{have}\:\left(\mathrm{1}+\mathrm{3}\sqrt{\mathrm{2}}{x}\right)^{\mathrm{9}} \:+\left(\mathrm{1}−\mathrm{3}\sqrt{\mathrm{2}}\right)^{\mathrm{9}} =\sum_{{k}=\mathrm{0}} ^{\mathrm{9}} \:{C}_{\mathrm{9}} ^{{k}} \left(\mathrm{3}\sqrt{\mathrm{2}}{x}\right)^{{k}} \\ $$$$+\sum_{{k}=\mathrm{0}} ^{\mathrm{9}} \:{C}_{\mathrm{9}} ^{{k}} \:\left(−\mathrm{1}\right)^{{k}} \left(\mathrm{3}\sqrt{\mathrm{2}}\right)^{{k}} \:=\sum_{{k}=\mathrm{0}} ^{\mathrm{9}} {C}_{\mathrm{9}} ^{{k}} \left(\mathrm{1}+\left(−\mathrm{1}\right)^{{k}} \right)\left(\mathrm{3}\sqrt{\mathrm{2}}\right)^{{k}} \:{x}^{{k}} \\ $$$$=\sum_{{p}=\mathrm{0}} ^{\left[\frac{\mathrm{9}}{\mathrm{2}}\right]} \:{C}_{\mathrm{9}} ^{\mathrm{2}{p}} \:\:\mathrm{2}\:\:×\mathrm{2}^{{p}} \:\mathrm{3}^{\mathrm{2}{p}} \:{x}^{\mathrm{2}{p}} \:=\sum_{{p}=\mathrm{0}} ^{\mathrm{4}} \:{C}_{\mathrm{9}} ^{\mathrm{2}{p}} \:\mathrm{2}^{{p}+\mathrm{1}} \:\mathrm{9}^{{p}} \:{x}^{\mathrm{2}{p}} \: \\ $$$$\sum_{{p}=\mathrm{0}} ^{\mathrm{4}} \:{a}_{{p}} \:\:{x}^{\mathrm{2}{p}} \:\:{with}\:{a}_{{p}} =\mathrm{2}^{{p}+\mathrm{1}} \:\mathrm{9}^{{p}} \:{C}_{\mathrm{9}} ^{\mathrm{2}{p}} \:{we}\:{see}\:{that}\:{a}_{{p}} \geqslant\mathrm{0}\:.... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com