Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 63720 by mathmax by abdo last updated on 08/Jul/19

calculate ∫(√((x−3)(2−x)))dx

$${calculate}\:\int\sqrt{\left({x}−\mathrm{3}\right)\left(\mathrm{2}−{x}\right)}{dx} \\ $$

Commented by Prithwish sen last updated on 08/Jul/19

∫(√(−x^2 +5x −6)) dx  = ∫(√(((1/2))^2 −(x−(5/2))^2 )) dx

$$\int\sqrt{−\mathrm{x}^{\mathrm{2}} +\mathrm{5x}\:−\mathrm{6}}\:\mathrm{dx}\:\:=\:\int\sqrt{\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} −\left(\mathrm{x}−\frac{\mathrm{5}}{\mathrm{2}}\right)^{\mathrm{2}} }\:\mathrm{dx} \\ $$

Commented by mathmax by abdo last updated on 08/Jul/19

we have (x−3)(2−x) =2x−x^2 −6+3x =−x^2  +5x−6  =−(x^2 −5x+6) =−{ x^2 −2(5/2)x +((25)/4) +6−((25)/4)}  =−{(x−(5/2))^2  −(1/4)}=(1/4)−(x−(5/2))^2  let use the changement  x−(5/2) =((sint)/2) ⇒  ∫(√((x−3)(2−x)))dx =∫(1/2)(√(1−sin^2 t))((cost)/2)dt  =(1/4) ∫  cos^2 t dt =(1/4) ∫((1+cos(2t))/2)dt =(1/8) ∫(1+cos(2t))dt  =(t/8) +(1/(16))sin(2t) +c =(t/8) +(1/8)sint cost +c  =arcsin(2x−5) +(1/8)(2x−5)(√(1−(2x−5)^2 )) +c .

$${we}\:{have}\:\left({x}−\mathrm{3}\right)\left(\mathrm{2}−{x}\right)\:=\mathrm{2}{x}−{x}^{\mathrm{2}} −\mathrm{6}+\mathrm{3}{x}\:=−{x}^{\mathrm{2}} \:+\mathrm{5}{x}−\mathrm{6} \\ $$$$=−\left({x}^{\mathrm{2}} −\mathrm{5}{x}+\mathrm{6}\right)\:=−\left\{\:{x}^{\mathrm{2}} −\mathrm{2}\frac{\mathrm{5}}{\mathrm{2}}{x}\:+\frac{\mathrm{25}}{\mathrm{4}}\:+\mathrm{6}−\frac{\mathrm{25}}{\mathrm{4}}\right\} \\ $$$$=−\left\{\left({x}−\frac{\mathrm{5}}{\mathrm{2}}\right)^{\mathrm{2}} \:−\frac{\mathrm{1}}{\mathrm{4}}\right\}=\frac{\mathrm{1}}{\mathrm{4}}−\left({x}−\frac{\mathrm{5}}{\mathrm{2}}\right)^{\mathrm{2}} \:{let}\:{use}\:{the}\:{changement} \\ $$$${x}−\frac{\mathrm{5}}{\mathrm{2}}\:=\frac{{sint}}{\mathrm{2}}\:\Rightarrow \\ $$$$\int\sqrt{\left({x}−\mathrm{3}\right)\left(\mathrm{2}−{x}\right)}{dx}\:=\int\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{1}−{sin}^{\mathrm{2}} {t}}\frac{{cost}}{\mathrm{2}}{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\:\int\:\:{cos}^{\mathrm{2}} {t}\:{dt}\:=\frac{\mathrm{1}}{\mathrm{4}}\:\int\frac{\mathrm{1}+{cos}\left(\mathrm{2}{t}\right)}{\mathrm{2}}{dt}\:=\frac{\mathrm{1}}{\mathrm{8}}\:\int\left(\mathrm{1}+{cos}\left(\mathrm{2}{t}\right)\right){dt} \\ $$$$=\frac{{t}}{\mathrm{8}}\:+\frac{\mathrm{1}}{\mathrm{16}}{sin}\left(\mathrm{2}{t}\right)\:+{c}\:=\frac{{t}}{\mathrm{8}}\:+\frac{\mathrm{1}}{\mathrm{8}}{sint}\:{cost}\:+{c} \\ $$$$={arcsin}\left(\mathrm{2}{x}−\mathrm{5}\right)\:+\frac{\mathrm{1}}{\mathrm{8}}\left(\mathrm{2}{x}−\mathrm{5}\right)\sqrt{\mathrm{1}−\left(\mathrm{2}{x}−\mathrm{5}\right)^{\mathrm{2}} }\:+{c}\:. \\ $$

Answered by MJS last updated on 08/Jul/19

∫(√((x−3)(2−x)))dx=       [t=arccos (2x−5) → dx=−(√((x−3)(2−x)))dt]  =−(1/4)∫sin^2  t dt=−(1/8)∫dt+(1/8)∫cos 2t dt=  =−(1/8)t+(1/(16))sin 2t =−(1/8)t+(1/8)sin t cos t =  =−(1/8)arccos (2x−5) +(1/4)(2x−5)(√((x−3)(2−x)))+C

$$\int\sqrt{\left({x}−\mathrm{3}\right)\left(\mathrm{2}−{x}\right)}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{arccos}\:\left(\mathrm{2}{x}−\mathrm{5}\right)\:\rightarrow\:{dx}=−\sqrt{\left({x}−\mathrm{3}\right)\left(\mathrm{2}−{x}\right)}{dt}\right] \\ $$$$=−\frac{\mathrm{1}}{\mathrm{4}}\int\mathrm{sin}^{\mathrm{2}} \:{t}\:{dt}=−\frac{\mathrm{1}}{\mathrm{8}}\int{dt}+\frac{\mathrm{1}}{\mathrm{8}}\int\mathrm{cos}\:\mathrm{2}{t}\:{dt}= \\ $$$$=−\frac{\mathrm{1}}{\mathrm{8}}{t}+\frac{\mathrm{1}}{\mathrm{16}}\mathrm{sin}\:\mathrm{2}{t}\:=−\frac{\mathrm{1}}{\mathrm{8}}{t}+\frac{\mathrm{1}}{\mathrm{8}}\mathrm{sin}\:{t}\:\mathrm{cos}\:{t}\:= \\ $$$$=−\frac{\mathrm{1}}{\mathrm{8}}\mathrm{arccos}\:\left(\mathrm{2}{x}−\mathrm{5}\right)\:+\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{2}{x}−\mathrm{5}\right)\sqrt{\left({x}−\mathrm{3}\right)\left(\mathrm{2}−{x}\right)}+{C} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com