Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 6350 by sanusihammed last updated on 24/Jun/16

Prove by matimatical induction  1 + 8 + 27 + ...... + n^3   =  [((n(n + 1))/2)]^2

$${Prove}\:{by}\:{matimatical}\:{induction} \\ $$$$\mathrm{1}\:+\:\mathrm{8}\:+\:\mathrm{27}\:+\:......\:+\:{n}^{\mathrm{3}} \:\:=\:\:\left[\frac{{n}\left({n}\:+\:\mathrm{1}\right)}{\mathrm{2}}\right]^{\mathrm{2}} \\ $$

Answered by prakash jain last updated on 24/Jun/16

n=1  1=(((1∙2)/2))^2  so statement is true for n=1  assume it is true for n=k  then Σ_(i=1) ^k i^3 =[((k(k+1))/2)]^2   Σ_(i=1) ^(k+1) i^3 =[((k(k+1))/2)]^2 +(k+1)^3 =(k+1)^2 [(k^2 /2^2 )+k+1]  =(((k+1)^2 )/2^2 )[k^2 +4k+k)=(((k+1)^2 (k+2)^2 )/2^2 )  if statement is true for n=k then it is true for  n=k+1.  ■

$${n}=\mathrm{1} \\ $$$$\mathrm{1}=\left(\frac{\mathrm{1}\centerdot\mathrm{2}}{\mathrm{2}}\right)^{\mathrm{2}} \:\mathrm{so}\:\mathrm{statement}\:\mathrm{is}\:\mathrm{true}\:\mathrm{for}\:{n}=\mathrm{1} \\ $$$${assume}\:{it}\:{is}\:{true}\:{for}\:{n}={k} \\ $$$$\mathrm{then}\:\underset{{i}=\mathrm{1}} {\overset{{k}} {\sum}}{i}^{\mathrm{3}} =\left[\frac{{k}\left({k}+\mathrm{1}\right)}{\mathrm{2}}\right]^{\mathrm{2}} \\ $$$$\underset{{i}=\mathrm{1}} {\overset{{k}+\mathrm{1}} {\sum}}{i}^{\mathrm{3}} =\left[\frac{{k}\left({k}+\mathrm{1}\right)}{\mathrm{2}}\right]^{\mathrm{2}} +\left({k}+\mathrm{1}\right)^{\mathrm{3}} =\left({k}+\mathrm{1}\right)^{\mathrm{2}} \left[\frac{{k}^{\mathrm{2}} }{\mathrm{2}^{\mathrm{2}} }+{k}+\mathrm{1}\right] \\ $$$$=\frac{\left({k}+\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{2}^{\mathrm{2}} }\left[{k}^{\mathrm{2}} +\mathrm{4}{k}+{k}\right)=\frac{\left({k}+\mathrm{1}\right)^{\mathrm{2}} \left({k}+\mathrm{2}\right)^{\mathrm{2}} }{\mathrm{2}^{\mathrm{2}} } \\ $$$${if}\:{statement}\:{is}\:{true}\:{for}\:{n}={k}\:{then}\:{it}\:{is}\:{true}\:{for} \\ $$$${n}={k}+\mathrm{1}. \\ $$$$\blacksquare \\ $$

Commented by sanusihammed last updated on 25/Jun/16

Thanks so much

$${Thanks}\:{so}\:{much} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com