Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 63481 by naka3546 last updated on 04/Jul/19

Find  the  solution  of  inequality  :         x^2  + ∣x∣ > 6

$${Find}\:\:{the}\:\:{solution}\:\:{of}\:\:{inequality}\:\:: \\ $$ $$\:\:\:\:\:\:\:{x}^{\mathrm{2}} \:+\:\mid{x}\mid\:>\:\mathrm{6} \\ $$

Commented bymathmax by abdo last updated on 04/Jul/19

(ine) ⇒∣x∣^2 +∣x∣−6>0 ⇒t^2 +t−6>0  Δ=1−4(−6)=25 ⇒ t_1 =((−1+5)/2) =2  and t_2 =((−1−5)/2) =−3 ⇒  ∣x∣^2 +∣x∣−6 =(∣x∣−2)(∣x∣+3)   so  (ine) ⇒{∣x∣−2}{∣x∣+3}>0 ⇒  ∣x∣−2 >0   (because ∣x∣ +3>0 ⇒ x>2 or x<−2 ⇒  x ∈]−∞,−2[∪]2,+∞[

$$\left({ine}\right)\:\Rightarrow\mid{x}\mid^{\mathrm{2}} +\mid{x}\mid−\mathrm{6}>\mathrm{0}\:\Rightarrow{t}^{\mathrm{2}} +{t}−\mathrm{6}>\mathrm{0} \\ $$ $$\Delta=\mathrm{1}−\mathrm{4}\left(−\mathrm{6}\right)=\mathrm{25}\:\Rightarrow\:{t}_{\mathrm{1}} =\frac{−\mathrm{1}+\mathrm{5}}{\mathrm{2}}\:=\mathrm{2}\:\:{and}\:{t}_{\mathrm{2}} =\frac{−\mathrm{1}−\mathrm{5}}{\mathrm{2}}\:=−\mathrm{3}\:\Rightarrow \\ $$ $$\mid{x}\mid^{\mathrm{2}} +\mid{x}\mid−\mathrm{6}\:=\left(\mid{x}\mid−\mathrm{2}\right)\left(\mid{x}\mid+\mathrm{3}\right)\:\:\:{so}\:\:\left({ine}\right)\:\Rightarrow\left\{\mid{x}\mid−\mathrm{2}\right\}\left\{\mid{x}\mid+\mathrm{3}\right\}>\mathrm{0}\:\Rightarrow \\ $$ $$\mid{x}\mid−\mathrm{2}\:>\mathrm{0}\:\:\:\left({because}\:\mid{x}\mid\:+\mathrm{3}>\mathrm{0}\:\Rightarrow\:{x}>\mathrm{2}\:{or}\:{x}<−\mathrm{2}\:\Rightarrow\right. \\ $$ $$\left.{x}\:\in\right]−\infty,−\mathrm{2}\left[\cup\right]\mathrm{2},+\infty\left[\right. \\ $$ $$ \\ $$

Answered by MJS last updated on 04/Jul/19

x>0  x^2 +x>6  x^2 +x−6=0 ⇒ x=−3∨x=2  ⇒ x<−3∨x>2 but x>0  ⇒ x>2    x<0  x^2 −x>6  x^2 −x−6=0 ⇒ x=−2∨x=3  ⇒ x<−2∨x>3 but x<0  ⇒ x<−2    x^2 +∣x∣>6 ⇒ x<−2∨2<x ⇔ x∈]−∞; −2[∪]2; +∞[

$${x}>\mathrm{0} \\ $$ $${x}^{\mathrm{2}} +{x}>\mathrm{6} \\ $$ $${x}^{\mathrm{2}} +{x}−\mathrm{6}=\mathrm{0}\:\Rightarrow\:{x}=−\mathrm{3}\vee{x}=\mathrm{2} \\ $$ $$\Rightarrow\:{x}<−\mathrm{3}\vee{x}>\mathrm{2}\:\mathrm{but}\:{x}>\mathrm{0} \\ $$ $$\Rightarrow\:{x}>\mathrm{2} \\ $$ $$ \\ $$ $${x}<\mathrm{0} \\ $$ $${x}^{\mathrm{2}} −{x}>\mathrm{6} \\ $$ $${x}^{\mathrm{2}} −{x}−\mathrm{6}=\mathrm{0}\:\Rightarrow\:{x}=−\mathrm{2}\vee{x}=\mathrm{3} \\ $$ $$\Rightarrow\:{x}<−\mathrm{2}\vee{x}>\mathrm{3}\:\mathrm{but}\:{x}<\mathrm{0} \\ $$ $$\Rightarrow\:{x}<−\mathrm{2} \\ $$ $$ \\ $$ $$\left.{x}^{\mathrm{2}} +\mid{x}\mid>\mathrm{6}\:\Rightarrow\:{x}<−\mathrm{2}\vee\mathrm{2}<{x}\:\Leftrightarrow\:{x}\in\right]−\infty;\:−\mathrm{2}\left[\cup\right]\mathrm{2};\:+\infty\left[\right. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com