Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 63116 by mugan deni last updated on 29/Jun/19

∫((1+×)/(√(1+×^2 )))dx

$$\int\frac{\mathrm{1}+×}{\sqrt{\mathrm{1}+×^{\mathrm{2}} }}{dx} \\ $$

Commented by mathmax by abdo last updated on 30/Jun/19

let use the changement x=tanθ ⇒  ∫ ((1+x)/(√(1+x^2 )))dx =∫  ((1+tanθ)/(√(1+tan^2 θ)))(1+tan^2 θ)dθ = ∫  (√(1+tan^2 θ))(1+tanθ)dθ  =∫  ((1+tanθ)/(cosθ)) dθ=∫  (dθ/(cosθ)) + ∫   ((sinθ)/(cos^2 θ)) dθ  ∫   ((sinθ)/(cos^2 θ)) =(1/(cosθ)) +c_1   ∫  (dθ/(cosθ)) =_(tan((θ/2))=u)      ∫   ((2du)/((1+u^2 )((1−u^2 )/(1+u^2 )))) =∫   ((2du)/(1−u^2 )) =∫ ((1/(1−u)) +(1/(1+u)))du  =ln∣((1+u)/(1−u))∣ +c_2 =ln∣((1+tan((θ/2)))/(1−tan((θ/2))))∣ +c_2 =ln∣tan((π/4)+(θ/2))∣ ⇒  we have  1+x^2  =(1/(cos^2 θ)) ⇒ cos^2 θ =(1/(1+x^2 )) ⇒cosθ =(1/(√(1+x^2 ))) ⇒  ∫  ((1+x)/(√(1+x^2 ))) dx =(√(1+x^2  ))  +ln∣tan((π/4)+((arctanx)/2))∣ +C  another way  ∫  ((1+x)/(√(1+x^2 )))dx =∫  (dx/(√(1+x^2 ))) +∫    ((xdx)/(√(1+x^2 )))=ln(x+(√(1+x^2 )) +(√(1+x^2 )) +C  and this way  is eazy...

$${let}\:{use}\:{the}\:{changement}\:{x}={tan}\theta\:\Rightarrow \\ $$$$\int\:\frac{\mathrm{1}+{x}}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{dx}\:=\int\:\:\frac{\mathrm{1}+{tan}\theta}{\sqrt{\mathrm{1}+{tan}^{\mathrm{2}} \theta}}\left(\mathrm{1}+{tan}^{\mathrm{2}} \theta\right){d}\theta\:=\:\int\:\:\sqrt{\mathrm{1}+{tan}^{\mathrm{2}} \theta}\left(\mathrm{1}+{tan}\theta\right){d}\theta \\ $$$$=\int\:\:\frac{\mathrm{1}+{tan}\theta}{{cos}\theta}\:{d}\theta=\int\:\:\frac{{d}\theta}{{cos}\theta}\:+\:\int\:\:\:\frac{{sin}\theta}{{cos}^{\mathrm{2}} \theta}\:{d}\theta \\ $$$$\int\:\:\:\frac{{sin}\theta}{{cos}^{\mathrm{2}} \theta}\:=\frac{\mathrm{1}}{{cos}\theta}\:+{c}_{\mathrm{1}} \\ $$$$\int\:\:\frac{{d}\theta}{{cos}\theta}\:=_{{tan}\left(\frac{\theta}{\mathrm{2}}\right)={u}} \:\:\:\:\:\int\:\:\:\frac{\mathrm{2}{du}}{\left(\mathrm{1}+{u}^{\mathrm{2}} \right)\frac{\mathrm{1}−{u}^{\mathrm{2}} }{\mathrm{1}+{u}^{\mathrm{2}} }}\:=\int\:\:\:\frac{\mathrm{2}{du}}{\mathrm{1}−{u}^{\mathrm{2}} }\:=\int\:\left(\frac{\mathrm{1}}{\mathrm{1}−{u}}\:+\frac{\mathrm{1}}{\mathrm{1}+{u}}\right){du} \\ $$$$={ln}\mid\frac{\mathrm{1}+{u}}{\mathrm{1}−{u}}\mid\:+{c}_{\mathrm{2}} ={ln}\mid\frac{\mathrm{1}+{tan}\left(\frac{\theta}{\mathrm{2}}\right)}{\mathrm{1}−{tan}\left(\frac{\theta}{\mathrm{2}}\right)}\mid\:+{c}_{\mathrm{2}} ={ln}\mid{tan}\left(\frac{\pi}{\mathrm{4}}+\frac{\theta}{\mathrm{2}}\right)\mid\:\Rightarrow \\ $$$${we}\:{have}\:\:\mathrm{1}+{x}^{\mathrm{2}} \:=\frac{\mathrm{1}}{{cos}^{\mathrm{2}} \theta}\:\Rightarrow\:{cos}^{\mathrm{2}} \theta\:=\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }\:\Rightarrow{cos}\theta\:=\frac{\mathrm{1}}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:\Rightarrow \\ $$$$\int\:\:\frac{\mathrm{1}+{x}}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:{dx}\:=\sqrt{\mathrm{1}+{x}^{\mathrm{2}} \:}\:\:+{ln}\mid{tan}\left(\frac{\pi}{\mathrm{4}}+\frac{{arctanx}}{\mathrm{2}}\right)\mid\:+{C} \\ $$$${another}\:{way} \\ $$$$\int\:\:\frac{\mathrm{1}+{x}}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{dx}\:=\int\:\:\frac{{dx}}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:+\int\:\:\:\:\frac{{xdx}}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}={ln}\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:+{C}\right. \\ $$$${and}\:{this}\:{way}\:\:{is}\:{eazy}... \\ $$

Answered by Hope last updated on 29/Jun/19

∫(dx/(√(1+x^2 )))+∫((xdx)/(√(1+x^2 )))  x=tana  dx=sec^2 ada  ∫((sec^2 ada)/(seca))+∫((tana×sec^2 ada)/(seca))  ∫seca da+∫tanaseca da  ln(seca+tana)+seca+c  ln(x+(√(1+x^2 )) )+(√(1+x^2 )) +c

$$\int\frac{{dx}}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}+\int\frac{{xdx}}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }} \\ $$$${x}={tana}\:\:{dx}={sec}^{\mathrm{2}} {ada} \\ $$$$\int\frac{{sec}^{\mathrm{2}} {ada}}{{seca}}+\int\frac{{tana}×{sec}^{\mathrm{2}} {ada}}{{seca}} \\ $$$$\int{seca}\:{da}+\int{tanaseca}\:{da} \\ $$$${ln}\left({seca}+{tana}\right)+{seca}+{c} \\ $$$${ln}\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:\right)+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:+{c} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com