Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 63101 by mathmax by abdo last updated on 29/Jun/19

calculate  S =(1/(1×2)) +(1/(3×4)) +(1/(5×6)) +.....

$${calculate}\:\:{S}\:=\frac{\mathrm{1}}{\mathrm{1}×\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{3}×\mathrm{4}}\:+\frac{\mathrm{1}}{\mathrm{5}×\mathrm{6}}\:+..... \\ $$

Commented by mathmax by abdo last updated on 29/Jun/19

let try another way we have (d/dx)ln(1+x) =(1/(1+x)) =Σ_(n=0) ^∞  (−1)^n  x^n  with ∣x∣<1 ⇒  ln(1+x) =Σ_(n=0) ^∞  (((−1)^n x^(n+1) )/(n+1)) =Σ_(n=1) ^∞  (((−1)^(n−1) x^n )/n) ⇒  lim_(x→1) ln(1+x)=ln(2) =Σ_(n=1) ^∞  (((−1)^(n−1) )/n) =1−(1/2) +(1/3) −(1/4) +(1/5) −(1/6) +...=  =(1−(1/2))+((1/3)−(1/4))+((1/5) −(1/6))+...=(1/(1×2)) +(1/(3×4)) +(1/(5×6)) +....=S ⇒  S =ln(2).

$${let}\:{try}\:{another}\:{way}\:{we}\:{have}\:\frac{{d}}{{dx}}{ln}\left(\mathrm{1}+{x}\right)\:=\frac{\mathrm{1}}{\mathrm{1}+{x}}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}} \:{x}^{{n}} \:{with}\:\mid{x}\mid<\mathrm{1}\:\Rightarrow \\ $$$${ln}\left(\mathrm{1}+{x}\right)\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} {x}^{{n}+\mathrm{1}} }{{n}+\mathrm{1}}\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} {x}^{{n}} }{{n}}\:\Rightarrow \\ $$$${lim}_{{x}\rightarrow\mathrm{1}} {ln}\left(\mathrm{1}+{x}\right)={ln}\left(\mathrm{2}\right)\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}}\:=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{3}}\:−\frac{\mathrm{1}}{\mathrm{4}}\:+\frac{\mathrm{1}}{\mathrm{5}}\:−\frac{\mathrm{1}}{\mathrm{6}}\:+...= \\ $$$$=\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\right)+\left(\frac{\mathrm{1}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{4}}\right)+\left(\frac{\mathrm{1}}{\mathrm{5}}\:−\frac{\mathrm{1}}{\mathrm{6}}\right)+...=\frac{\mathrm{1}}{\mathrm{1}×\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{3}×\mathrm{4}}\:+\frac{\mathrm{1}}{\mathrm{5}×\mathrm{6}}\:+....={S}\:\Rightarrow \\ $$$${S}\:={ln}\left(\mathrm{2}\right). \\ $$

Answered by mr W last updated on 29/Jun/19

S =(1/(1×2)) +(1/(3×4)) +(1/(5×6)) +..... >0  S=((1/1)−(1/2))+((1/3)−(1/4))+((1/5)−(1/6))+  S=((1/1)+(1/3)+(1/5)+...)−((1/2)+(1/4)+(1/6)+...)  S=((1/1)+(1/2)+(1/3)+(1/4)+(1/5)+(1/6)+...)−2((1/2)+(1/4)+(1/6)+...)  S=((1/1)+(1/2)+(1/3)+(1/4)+(1/5)+(1/6)+...)−((1/1)+(1/2)+(1/3)+...)  S=0 ?

$${S}\:=\frac{\mathrm{1}}{\mathrm{1}×\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{3}×\mathrm{4}}\:+\frac{\mathrm{1}}{\mathrm{5}×\mathrm{6}}\:+.....\:>\mathrm{0} \\ $$$${S}=\left(\frac{\mathrm{1}}{\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{2}}\right)+\left(\frac{\mathrm{1}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{4}}\right)+\left(\frac{\mathrm{1}}{\mathrm{5}}−\frac{\mathrm{1}}{\mathrm{6}}\right)+ \\ $$$${S}=\left(\frac{\mathrm{1}}{\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{5}}+...\right)−\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{6}}+...\right) \\ $$$${S}=\left(\frac{\mathrm{1}}{\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{5}}+\frac{\mathrm{1}}{\mathrm{6}}+...\right)−\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{6}}+...\right) \\ $$$${S}=\left(\frac{\mathrm{1}}{\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{5}}+\frac{\mathrm{1}}{\mathrm{6}}+...\right)−\left(\frac{\mathrm{1}}{\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+...\right) \\ $$$${S}=\mathrm{0}\:? \\ $$

Commented by MJS last updated on 29/Jun/19

I seem to remember that it′s not allowed  to rearrange in this way  S=(1/2)+s ⇒ S>(1/2)  S=(7/(12))+s ⇒ S>(7/(12))  ...

$$\mathrm{I}\:\mathrm{seem}\:\mathrm{to}\:\mathrm{remember}\:\mathrm{that}\:\mathrm{it}'\mathrm{s}\:\mathrm{not}\:\mathrm{allowed} \\ $$$$\mathrm{to}\:\mathrm{rearrange}\:\mathrm{in}\:\mathrm{this}\:\mathrm{way} \\ $$$${S}=\frac{\mathrm{1}}{\mathrm{2}}+{s}\:\Rightarrow\:{S}>\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${S}=\frac{\mathrm{7}}{\mathrm{12}}+{s}\:\Rightarrow\:{S}>\frac{\mathrm{7}}{\mathrm{12}} \\ $$$$... \\ $$

Commented by turbo msup by abdo last updated on 29/Jun/19

we hsve S=Σa_i    and a_i  >0 how  can S be0....

$${we}\:{hsve}\:{S}=\Sigma{a}_{{i}} \:\:\:{and}\:{a}_{{i}} \:>\mathrm{0}\:{how} \\ $$$${can}\:{S}\:{be}\mathrm{0}.... \\ $$

Commented by turbo msup by abdo last updated on 29/Jun/19

we hsve S=Σa_i    and a_i  >0 how  can S be0....

$${we}\:{hsve}\:{S}=\Sigma{a}_{{i}} \:\:\:{and}\:{a}_{{i}} \:>\mathrm{0}\:{how} \\ $$$${can}\:{S}\:{be}\mathrm{0}.... \\ $$

Commented by mathmax by abdo last updated on 29/Jun/19

sir mrw your begining is correct  but the answer is not 0 let complete the  work we have S =lim_(n→+∞) ( Σ_(k=0) ^n  (1/(2k+1)) −(1/2)Σ_(k=1) ^n  (1/k))  we have Σ_(k=1) ^n  (1/k) =H_n   Σ_(k=0) ^n  (1/(2k+1)) =1+(1/3) +(1/5) +....+(1/(2n+1)) =1+(1/2) +(1/3) +(1/4) +(1/5) +....+(1/(2n)) +(1/(2n+1))  −(1/2) −(1/4) −....−(1/(2n)) =H_(2n+1) −(1/2) H_n  ⇒  Σ_(k=0) ^n  (1/(2k+1)) −(1/2)Σ_(k=1) ^n  (1/k) =H_(2n+1) −H_n =ln(2n+1)+γ +o((1/n))−ln(n)−γ +o((1/n))  =ln(((2n+1)/n))+o((1/n))→ln(2) (n→+∞) so  (1/(1×2)) +(1/(3×4)) +(1/(5×6)) +.....=ln(2).(γ is the constant of euler)

$${sir}\:{mrw}\:{your}\:{begining}\:{is}\:{correct}\:\:{but}\:{the}\:{answer}\:{is}\:{not}\:\mathrm{0}\:{let}\:{complete}\:{the} \\ $$$${work}\:{we}\:{have}\:{S}\:={lim}_{{n}\rightarrow+\infty} \left(\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\frac{\mathrm{1}}{\mathrm{2}{k}+\mathrm{1}}\:−\frac{\mathrm{1}}{\mathrm{2}}\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}}\right) \\ $$$${we}\:{have}\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}}\:={H}_{{n}} \\ $$$$\sum_{{k}=\mathrm{0}} ^{{n}} \:\frac{\mathrm{1}}{\mathrm{2}{k}+\mathrm{1}}\:=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}}\:+\frac{\mathrm{1}}{\mathrm{5}}\:+....+\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}\:=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{3}}\:+\frac{\mathrm{1}}{\mathrm{4}}\:+\frac{\mathrm{1}}{\mathrm{5}}\:+....+\frac{\mathrm{1}}{\mathrm{2}{n}}\:+\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}} \\ $$$$−\frac{\mathrm{1}}{\mathrm{2}}\:−\frac{\mathrm{1}}{\mathrm{4}}\:−....−\frac{\mathrm{1}}{\mathrm{2}{n}}\:={H}_{\mathrm{2}{n}+\mathrm{1}} −\frac{\mathrm{1}}{\mathrm{2}}\:{H}_{{n}} \:\Rightarrow \\ $$$$\sum_{{k}=\mathrm{0}} ^{{n}} \:\frac{\mathrm{1}}{\mathrm{2}{k}+\mathrm{1}}\:−\frac{\mathrm{1}}{\mathrm{2}}\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}}\:={H}_{\mathrm{2}{n}+\mathrm{1}} −{H}_{{n}} ={ln}\left(\mathrm{2}{n}+\mathrm{1}\right)+\gamma\:+{o}\left(\frac{\mathrm{1}}{{n}}\right)−{ln}\left({n}\right)−\gamma\:+{o}\left(\frac{\mathrm{1}}{{n}}\right) \\ $$$$={ln}\left(\frac{\mathrm{2}{n}+\mathrm{1}}{{n}}\right)+{o}\left(\frac{\mathrm{1}}{{n}}\right)\rightarrow{ln}\left(\mathrm{2}\right)\:\left({n}\rightarrow+\infty\right)\:{so} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}×\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{3}×\mathrm{4}}\:+\frac{\mathrm{1}}{\mathrm{5}×\mathrm{6}}\:+.....={ln}\left(\mathrm{2}\right).\left(\gamma\:{is}\:{the}\:{constant}\:{of}\:{euler}\right) \\ $$

Commented by mr W last updated on 29/Jun/19

thanks sir! i learnt something new.

$${thanks}\:{sir}!\:{i}\:{learnt}\:{something}\:{new}. \\ $$

Commented by mathmax by abdo last updated on 29/Jun/19

you are always welcome.

$${you}\:{are}\:{always}\:{welcome}. \\ $$

Answered by MJS last updated on 29/Jun/19

it seems to be  S=ln 2  but I cannot properly show it

$$\mathrm{it}\:\mathrm{seems}\:\mathrm{to}\:\mathrm{be} \\ $$$${S}=\mathrm{ln}\:\mathrm{2} \\ $$$$\mathrm{but}\:\mathrm{I}\:\mathrm{cannot}\:\mathrm{properly}\:\mathrm{show}\:\mathrm{it} \\ $$

Answered by naka3546 last updated on 29/Jun/19

Terms of Service

Privacy Policy

Contact: info@tinkutara.com