Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 63079 by mathmax by abdo last updated on 28/Jun/19

let f(z) =((sin(2z))/z^n )    with n integr natural   calculate Res(f,0)

$${let}\:{f}\left({z}\right)\:=\frac{{sin}\left(\mathrm{2}{z}\right)}{{z}^{{n}} }\:\:\:\:{with}\:{n}\:{integr}\:{natural}\: \\ $$$${calculate}\:{Res}\left({f},\mathrm{0}\right) \\ $$

Commented by mathmax by abdo last updated on 03/Jul/19

0 is pole of f at ordre n ⇒Res(f,0) =lim_(z→0)  (1/((n−1)!)){ z^n f(z)}^((n−1))   =lim_(z→0)   (1/((n−1)!)) {sin(2z)}^((n−1))   we have sin^((1)) (2z) =2cos(2z)=2 sin(2z+(π/2)) let suppose that  sin^((n)) (2z) =2^n sin(2z+((nπ)/2)) ⇒sin^((n+1)) (2z) =2^(n+1) cos(2z+((nπ)/2))  =2^(n+1) sin(2z +(n+1)(π/2))  so the relation is true at ordr n+1 ⇒  Res(f,0) =lim_(z→0)  (1/((n−1)!)) ×2^(n−1) sin(2z+(((n−1)π)/2))  =(2^(n−1) /((n−1)!))sin((((n−1)π)/2))   with n≥1 .

$$\mathrm{0}\:{is}\:{pole}\:{of}\:{f}\:{at}\:{ordre}\:{n}\:\Rightarrow{Res}\left({f},\mathrm{0}\right)\:={lim}_{{z}\rightarrow\mathrm{0}} \:\frac{\mathrm{1}}{\left({n}−\mathrm{1}\right)!}\left\{\:{z}^{{n}} {f}\left({z}\right)\right\}^{\left({n}−\mathrm{1}\right)} \\ $$$$={lim}_{{z}\rightarrow\mathrm{0}} \:\:\frac{\mathrm{1}}{\left({n}−\mathrm{1}\right)!}\:\left\{{sin}\left(\mathrm{2}{z}\right)\right\}^{\left({n}−\mathrm{1}\right)} \\ $$$${we}\:{have}\:{sin}^{\left(\mathrm{1}\right)} \left(\mathrm{2}{z}\right)\:=\mathrm{2}{cos}\left(\mathrm{2}{z}\right)=\mathrm{2}\:{sin}\left(\mathrm{2}{z}+\frac{\pi}{\mathrm{2}}\right)\:{let}\:{suppose}\:{that} \\ $$$${sin}^{\left({n}\right)} \left(\mathrm{2}{z}\right)\:=\mathrm{2}^{{n}} {sin}\left(\mathrm{2}{z}+\frac{{n}\pi}{\mathrm{2}}\right)\:\Rightarrow{sin}^{\left({n}+\mathrm{1}\right)} \left(\mathrm{2}{z}\right)\:=\mathrm{2}^{{n}+\mathrm{1}} {cos}\left(\mathrm{2}{z}+\frac{{n}\pi}{\mathrm{2}}\right) \\ $$$$=\mathrm{2}^{{n}+\mathrm{1}} {sin}\left(\mathrm{2}{z}\:+\left({n}+\mathrm{1}\right)\frac{\pi}{\mathrm{2}}\right)\:\:{so}\:{the}\:{relation}\:{is}\:{true}\:{at}\:{ordr}\:{n}+\mathrm{1}\:\Rightarrow \\ $$$${Res}\left({f},\mathrm{0}\right)\:={lim}_{{z}\rightarrow\mathrm{0}} \:\frac{\mathrm{1}}{\left({n}−\mathrm{1}\right)!}\:×\mathrm{2}^{{n}−\mathrm{1}} {sin}\left(\mathrm{2}{z}+\frac{\left({n}−\mathrm{1}\right)\pi}{\mathrm{2}}\right) \\ $$$$=\frac{\mathrm{2}^{{n}−\mathrm{1}} }{\left({n}−\mathrm{1}\right)!}{sin}\left(\frac{\left({n}−\mathrm{1}\right)\pi}{\mathrm{2}}\right)\:\:\:{with}\:{n}\geqslant\mathrm{1}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com