Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 63032 by mathmax by abdo last updated on 28/Jun/19

let f(z) =(1/(sin(πz)))  calculate Res(f,n) with n integr

$${let}\:{f}\left({z}\right)\:=\frac{\mathrm{1}}{{sin}\left(\pi{z}\right)}\:\:{calculate}\:{Res}\left({f},{n}\right)\:{with}\:{n}\:{integr} \\ $$

Commented by mathmax by abdo last updated on 28/Jun/19

z=n is simple pole for f ⇒Res(f,n) =lim_(z→n) ((z−n)/(sin(πz)))  changement z−n =t give Res(f,n) =lim_(t→0)     (t/(sin(π(n+t)))  =lim_(t→0)       (t/((−1)^n  sin(πt))) =lim_(t→0)  (((−1)^n )/(((sin(πt))/(πt))π)) =(((−1)^n )/π)

$${z}={n}\:{is}\:{simple}\:{pole}\:{for}\:{f}\:\Rightarrow{Res}\left({f},{n}\right)\:={lim}_{{z}\rightarrow{n}} \frac{{z}−{n}}{{sin}\left(\pi{z}\right)} \\ $$$${changement}\:{z}−{n}\:={t}\:{give}\:{Res}\left({f},{n}\right)\:={lim}_{{t}\rightarrow\mathrm{0}} \:\:\:\:\frac{{t}}{{sin}\left(\pi\left({n}+{t}\right)\right.} \\ $$$$={lim}_{{t}\rightarrow\mathrm{0}} \:\:\:\:\:\:\frac{{t}}{\left(−\mathrm{1}\right)^{{n}} \:{sin}\left(\pi{t}\right)}\:={lim}_{{t}\rightarrow\mathrm{0}} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\frac{{sin}\left(\pi{t}\right)}{\pi{t}}\pi}\:=\frac{\left(−\mathrm{1}\right)^{{n}} }{\pi} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com