Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 62982 by ANTARES VY last updated on 27/Jun/19

((tg((x/2))−1)/(ctg((x/2))))=2sin((x/2))  x∈(180°;540°)

$$\frac{\boldsymbol{\mathrm{tg}}\left(\frac{\boldsymbol{\mathrm{x}}}{\mathrm{2}}\right)−\mathrm{1}}{\boldsymbol{\mathrm{ctg}}\left(\frac{\boldsymbol{\mathrm{x}}}{\mathrm{2}}\right)}=\mathrm{2}\boldsymbol{\mathrm{sin}}\left(\frac{\boldsymbol{\mathrm{x}}}{\mathrm{2}}\right)\:\:\boldsymbol{\mathrm{x}}\in\left(\mathrm{180}°;\mathrm{540}°\right) \\ $$$$ \\ $$

Answered by MJS last updated on 27/Jun/19

(1/(cot))=tan  tan^2  (x/2) −tan (x/2) −2sin (x/2) =0  let x=4arctan t  ((−2t(t^4 −2t^3 −4t^2 −2t+3))/((t−1)^3 (t+1)^2 (t^2 +1)))=0  ⇒ t_1 =0  t^4 −2t^3 −4t^3 −2t+3=0  no “nice” solution  t_2 ≈.607081  t_3 ≈3.30877  t_(4, 5) ∉R  ⇒  x_1 =360°×z  x_2 ≈125.04°+720°×z  x_3 ≈292.74°+720°×z  x∈[180°; 540°] ⇒ x≈292.74°∨x≈360°

$$\frac{\mathrm{1}}{\mathrm{cot}}=\mathrm{tan} \\ $$$$\mathrm{tan}^{\mathrm{2}} \:\frac{{x}}{\mathrm{2}}\:−\mathrm{tan}\:\frac{{x}}{\mathrm{2}}\:−\mathrm{2sin}\:\frac{{x}}{\mathrm{2}}\:=\mathrm{0} \\ $$$$\mathrm{let}\:{x}=\mathrm{4arctan}\:{t} \\ $$$$\frac{−\mathrm{2}{t}\left({t}^{\mathrm{4}} −\mathrm{2}{t}^{\mathrm{3}} −\mathrm{4}{t}^{\mathrm{2}} −\mathrm{2}{t}+\mathrm{3}\right)}{\left({t}−\mathrm{1}\right)^{\mathrm{3}} \left({t}+\mathrm{1}\right)^{\mathrm{2}} \left({t}^{\mathrm{2}} +\mathrm{1}\right)}=\mathrm{0} \\ $$$$\Rightarrow\:{t}_{\mathrm{1}} =\mathrm{0} \\ $$$${t}^{\mathrm{4}} −\mathrm{2}{t}^{\mathrm{3}} −\mathrm{4}{t}^{\mathrm{3}} −\mathrm{2}{t}+\mathrm{3}=\mathrm{0} \\ $$$$\mathrm{no}\:``\mathrm{nice}''\:\mathrm{solution} \\ $$$${t}_{\mathrm{2}} \approx.\mathrm{607081} \\ $$$${t}_{\mathrm{3}} \approx\mathrm{3}.\mathrm{30877} \\ $$$${t}_{\mathrm{4},\:\mathrm{5}} \notin\mathbb{R} \\ $$$$\Rightarrow \\ $$$${x}_{\mathrm{1}} =\mathrm{360}°×{z} \\ $$$${x}_{\mathrm{2}} \approx\mathrm{125}.\mathrm{04}°+\mathrm{720}°×{z} \\ $$$${x}_{\mathrm{3}} \approx\mathrm{292}.\mathrm{74}°+\mathrm{720}°×{z} \\ $$$${x}\in\left[\mathrm{180}°;\:\mathrm{540}°\right]\:\Rightarrow\:{x}\approx\mathrm{292}.\mathrm{74}°\vee{x}\approx\mathrm{360}° \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com