Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 62938 by ajfour last updated on 27/Jun/19

Commented by ajfour last updated on 27/Jun/19

Question 62861 (revisit)

$${Question}\:\mathrm{62861}\:\left({revisit}\right) \\ $$

Answered by ajfour last updated on 27/Jun/19

let A(x_1 ,x_1 ^2 ) , B(x_2 ,x_2 )^2 , C(x_3 ,x_3 ^2 )  cicumcentre of △ be (h,k)  R=(s/(√3))  (x−h)^2 +(x^2 −k)^2 =s^2 /3  This has four roots x_1 ,x_2 ,x_3 ,x_4    x^4 +(1−2k)x^2 −2hx+(h^2 +k^2 −(s^2 /3))=0  x_1 x_2 x_3 x_4 =h^2 +k^2 −s^2 /3    ....(i)  x_1 x_2 x_3 +x_4 (x_1 x_2 +x_2 x_3 +x_3 x_1 )=2h   ...(ii)  (x_1 x_2 +x_2 x_3 +x_3 x_1 )                 +x_4 (x_1 +x_2 +x_3 )=1−2k   ..(iii)   x_1 +x_2 +x_3 +x_4 =0          ...(iv)      But (h,k) also being centroid  of △ABC, we have      x_1 +x_2 +x_3 =3h       ...(v)      x_1 ^2 +x_2 ^2 +x_3 ^2 =3k       ....(vi)  from (iv)&(v)     x_1 +x_2 +x_3 = 3h  , x_4 =−3h  (x_1 +x_2 +x_3 )^2 =x_1 ^2 +x_2 ^2 +x_3 ^2                            +2(x_1 x_2 +x_2 x_3 +x_3 x_1 )  ⇒ x_1 x_2 +x_2 x_3 +x_3 x_1 =((9h^2 −3k)/2)  Now from (ii)    x_1 x_2 x_3 = 2h+3h(((9h^2 −3k)/2))  And using (i)    2h+3h(((9h^2 −3k)/2))+(1/(3h))(h^2 +k^2 −(s^2 /3))=0                                            .....(I)  And using (iii)  ((9h^2 −3k)/2) − 9h^2 =1−2k  ⇒ k = 9h^2 +2        ......(II)  using this in (I)  12h^2 +81h^4 −27h^2 (9h^2 +2)+2h^2          +2(9h^2 +2)^2 −((2s^2 )/3)=0  ⇒ 32h^2 =((2s^2 )/3)−8  ⇒ h^2 =((s^2 −12)/(48))  = (s^2 /(48))−(1/4)        k = ((3s^2 )/(16))−(1/4)  Now eq. below has four roots,  x_4 =−3h = −((√(3(s^2 −12)))/4)  x_A   is the smaller positive one  among x_1 , x_2 , and x_3 .   x^4 +(1−2k)x^2 −2hx+(h^2 +k^2 −(s^2 /3))=0 .  ___________________________  but as   x_1 x_2 x_3 =−(((h^2 +k^2 −s^2 /3)/(3h)))=−q  x_1 x_2 +x_2 x_3 +x_3 x_1 =((9h^2 −3k)/2) = p  and   x_1 +x_2 +x_3 =3h  we can solve rather a cubic     x^3 −3hx^2 +px+q=0   with    h= ((√(s^2 −12))/(4(√3))) , k = ((3s^2 )/(16))−(1/4) ,   q= ((h^2 +k^2 −s^2 /3)/(3h)) , p=((9h^2 −3k)/2) ■

$${let}\:{A}\left({x}_{\mathrm{1}} ,{x}_{\mathrm{1}} ^{\mathrm{2}} \right)\:,\:{B}\left({x}_{\mathrm{2}} ,{x}_{\mathrm{2}} \right)^{\mathrm{2}} ,\:{C}\left({x}_{\mathrm{3}} ,{x}_{\mathrm{3}} ^{\mathrm{2}} \right) \\ $$$${cicumcentre}\:{of}\:\bigtriangleup\:{be}\:\left({h},{k}\right) \\ $$$${R}=\frac{{s}}{\sqrt{\mathrm{3}}} \\ $$$$\left({x}−{h}\right)^{\mathrm{2}} +\left({x}^{\mathrm{2}} −{k}\right)^{\mathrm{2}} ={s}^{\mathrm{2}} /\mathrm{3} \\ $$$${This}\:{has}\:{four}\:{roots}\:{x}_{\mathrm{1}} ,{x}_{\mathrm{2}} ,{x}_{\mathrm{3}} ,{x}_{\mathrm{4}} \\ $$$$\:{x}^{\mathrm{4}} +\left(\mathrm{1}−\mathrm{2}{k}\right){x}^{\mathrm{2}} −\mathrm{2}{hx}+\left({h}^{\mathrm{2}} +{k}^{\mathrm{2}} −\frac{{s}^{\mathrm{2}} }{\mathrm{3}}\right)=\mathrm{0} \\ $$$${x}_{\mathrm{1}} {x}_{\mathrm{2}} {x}_{\mathrm{3}} {x}_{\mathrm{4}} ={h}^{\mathrm{2}} +{k}^{\mathrm{2}} −{s}^{\mathrm{2}} /\mathrm{3}\:\:\:\:....\left({i}\right) \\ $$$${x}_{\mathrm{1}} {x}_{\mathrm{2}} {x}_{\mathrm{3}} +{x}_{\mathrm{4}} \left({x}_{\mathrm{1}} {x}_{\mathrm{2}} +{x}_{\mathrm{2}} {x}_{\mathrm{3}} +{x}_{\mathrm{3}} {x}_{\mathrm{1}} \right)=\mathrm{2}{h}\:\:\:...\left({ii}\right) \\ $$$$\left({x}_{\mathrm{1}} {x}_{\mathrm{2}} +{x}_{\mathrm{2}} {x}_{\mathrm{3}} +{x}_{\mathrm{3}} {x}_{\mathrm{1}} \right)\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:+{x}_{\mathrm{4}} \left({x}_{\mathrm{1}} +{x}_{\mathrm{2}} +{x}_{\mathrm{3}} \right)=\mathrm{1}−\mathrm{2}{k}\:\:\:..\left({iii}\right) \\ $$$$\:{x}_{\mathrm{1}} +{x}_{\mathrm{2}} +{x}_{\mathrm{3}} +{x}_{\mathrm{4}} =\mathrm{0}\:\:\:\:\:\:\:\:\:\:...\left({iv}\right) \\ $$$$\:\:\:\:{But}\:\left({h},{k}\right)\:{also}\:{being}\:{centroid} \\ $$$${of}\:\bigtriangleup{ABC},\:{we}\:{have} \\ $$$$\:\:\:\:{x}_{\mathrm{1}} +{x}_{\mathrm{2}} +{x}_{\mathrm{3}} =\mathrm{3}{h}\:\:\:\:\:\:\:...\left({v}\right) \\ $$$$\:\:\:\:{x}_{\mathrm{1}} ^{\mathrm{2}} +{x}_{\mathrm{2}} ^{\mathrm{2}} +{x}_{\mathrm{3}} ^{\mathrm{2}} =\mathrm{3}{k}\:\:\:\:\:\:\:....\left({vi}\right) \\ $$$${from}\:\left({iv}\right)\&\left({v}\right) \\ $$$$\:\:\:{x}_{\mathrm{1}} +{x}_{\mathrm{2}} +{x}_{\mathrm{3}} =\:\mathrm{3}{h}\:\:,\:{x}_{\mathrm{4}} =−\mathrm{3}{h} \\ $$$$\left({x}_{\mathrm{1}} +{x}_{\mathrm{2}} +{x}_{\mathrm{3}} \right)^{\mathrm{2}} ={x}_{\mathrm{1}} ^{\mathrm{2}} +{x}_{\mathrm{2}} ^{\mathrm{2}} +{x}_{\mathrm{3}} ^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\mathrm{2}\left({x}_{\mathrm{1}} {x}_{\mathrm{2}} +{x}_{\mathrm{2}} {x}_{\mathrm{3}} +{x}_{\mathrm{3}} {x}_{\mathrm{1}} \right) \\ $$$$\Rightarrow\:{x}_{\mathrm{1}} {x}_{\mathrm{2}} +{x}_{\mathrm{2}} {x}_{\mathrm{3}} +{x}_{\mathrm{3}} {x}_{\mathrm{1}} =\frac{\mathrm{9}{h}^{\mathrm{2}} −\mathrm{3}{k}}{\mathrm{2}} \\ $$$${Now}\:{from}\:\left({ii}\right) \\ $$$$\:\:{x}_{\mathrm{1}} {x}_{\mathrm{2}} {x}_{\mathrm{3}} =\:\mathrm{2}{h}+\mathrm{3}{h}\left(\frac{\mathrm{9}{h}^{\mathrm{2}} −\mathrm{3}{k}}{\mathrm{2}}\right) \\ $$$${And}\:{using}\:\left({i}\right) \\ $$$$\:\:\mathrm{2}{h}+\mathrm{3}{h}\left(\frac{\mathrm{9}{h}^{\mathrm{2}} −\mathrm{3}{k}}{\mathrm{2}}\right)+\frac{\mathrm{1}}{\mathrm{3}{h}}\left({h}^{\mathrm{2}} +{k}^{\mathrm{2}} −\frac{{s}^{\mathrm{2}} }{\mathrm{3}}\right)=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:.....\left({I}\right) \\ $$$${And}\:{using}\:\left({iii}\right) \\ $$$$\frac{\mathrm{9}{h}^{\mathrm{2}} −\mathrm{3}{k}}{\mathrm{2}}\:−\:\mathrm{9}{h}^{\mathrm{2}} =\mathrm{1}−\mathrm{2}{k} \\ $$$$\Rightarrow\:{k}\:=\:\mathrm{9}{h}^{\mathrm{2}} +\mathrm{2}\:\:\:\:\:\:\:\:......\left({II}\right) \\ $$$${using}\:{this}\:{in}\:\left({I}\right) \\ $$$$\mathrm{12}{h}^{\mathrm{2}} +\mathrm{81}{h}^{\mathrm{4}} −\mathrm{27}{h}^{\mathrm{2}} \left(\mathrm{9}{h}^{\mathrm{2}} +\mathrm{2}\right)+\mathrm{2}{h}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:+\mathrm{2}\left(\mathrm{9}{h}^{\mathrm{2}} +\mathrm{2}\right)^{\mathrm{2}} −\frac{\mathrm{2}{s}^{\mathrm{2}} }{\mathrm{3}}=\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{32}{h}^{\mathrm{2}} =\frac{\mathrm{2}{s}^{\mathrm{2}} }{\mathrm{3}}−\mathrm{8} \\ $$$$\Rightarrow\:\boldsymbol{{h}}^{\mathrm{2}} =\frac{\boldsymbol{{s}}^{\mathrm{2}} −\mathrm{12}}{\mathrm{48}}\:\:=\:\frac{\boldsymbol{{s}}^{\mathrm{2}} }{\mathrm{48}}−\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\:\:\:\:\:\:\boldsymbol{{k}}\:=\:\frac{\mathrm{3}\boldsymbol{{s}}^{\mathrm{2}} }{\mathrm{16}}−\frac{\mathrm{1}}{\mathrm{4}} \\ $$$${Now}\:{eq}.\:{below}\:{has}\:{four}\:{roots}, \\ $$$${x}_{\mathrm{4}} =−\mathrm{3}{h}\:=\:−\frac{\sqrt{\mathrm{3}\left({s}^{\mathrm{2}} −\mathrm{12}\right)}}{\mathrm{4}} \\ $$$${x}_{{A}} \:\:{is}\:{the}\:{smaller}\:{positive}\:{one} \\ $$$${among}\:{x}_{\mathrm{1}} ,\:{x}_{\mathrm{2}} ,\:{and}\:{x}_{\mathrm{3}} . \\ $$$$\:{x}^{\mathrm{4}} +\left(\mathrm{1}−\mathrm{2}{k}\right){x}^{\mathrm{2}} −\mathrm{2}{hx}+\left({h}^{\mathrm{2}} +{k}^{\mathrm{2}} −\frac{{s}^{\mathrm{2}} }{\mathrm{3}}\right)=\mathrm{0}\:. \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$$${but}\:{as} \\ $$$$\:{x}_{\mathrm{1}} {x}_{\mathrm{2}} {x}_{\mathrm{3}} =−\left(\frac{{h}^{\mathrm{2}} +{k}^{\mathrm{2}} −{s}^{\mathrm{2}} /\mathrm{3}}{\mathrm{3}{h}}\right)=−{q} \\ $$$${x}_{\mathrm{1}} {x}_{\mathrm{2}} +{x}_{\mathrm{2}} {x}_{\mathrm{3}} +{x}_{\mathrm{3}} {x}_{\mathrm{1}} =\frac{\mathrm{9}{h}^{\mathrm{2}} −\mathrm{3}{k}}{\mathrm{2}}\:=\:{p} \\ $$$${and}\:\:\:{x}_{\mathrm{1}} +{x}_{\mathrm{2}} +{x}_{\mathrm{3}} =\mathrm{3}{h} \\ $$$${we}\:{can}\:{solve}\:{rather}\:{a}\:{cubic} \\ $$$$\:\:\:{x}^{\mathrm{3}} −\mathrm{3}{hx}^{\mathrm{2}} +{px}+{q}=\mathrm{0}\: \\ $$$${with}\:\:\:\:{h}=\:\frac{\sqrt{{s}^{\mathrm{2}} −\mathrm{12}}}{\mathrm{4}\sqrt{\mathrm{3}}}\:,\:{k}\:=\:\frac{\mathrm{3}{s}^{\mathrm{2}} }{\mathrm{16}}−\frac{\mathrm{1}}{\mathrm{4}}\:, \\ $$$$\:{q}=\:\frac{{h}^{\mathrm{2}} +{k}^{\mathrm{2}} −{s}^{\mathrm{2}} /\mathrm{3}}{\mathrm{3}{h}}\:,\:{p}=\frac{\mathrm{9}{h}^{\mathrm{2}} −\mathrm{3}{k}}{\mathrm{2}}\:\blacksquare \\ $$

Commented by mr W last updated on 27/Jun/19

a check with s=2(√3):  h=0, k=2  q=0, p=−3  x^3 −3x=0   ⇒x=0 (point A)  ⇒x=±(√3) (point B and C)  ⇒correct!

$${a}\:{check}\:{with}\:{s}=\mathrm{2}\sqrt{\mathrm{3}}: \\ $$$${h}=\mathrm{0},\:{k}=\mathrm{2} \\ $$$${q}=\mathrm{0},\:{p}=−\mathrm{3} \\ $$$${x}^{\mathrm{3}} −\mathrm{3}{x}=\mathrm{0}\: \\ $$$$\Rightarrow{x}=\mathrm{0}\:\left({point}\:{A}\right) \\ $$$$\Rightarrow{x}=\pm\sqrt{\mathrm{3}}\:\left({point}\:{B}\:{and}\:{C}\right) \\ $$$$\Rightarrow{correct}! \\ $$

Commented by mr W last updated on 27/Jun/19

great solution sir! you have found  a way to get x_(A,B,C)  from s!

$${great}\:{solution}\:{sir}!\:{you}\:{have}\:{found} \\ $$$${a}\:{way}\:{to}\:{get}\:{x}_{{A},{B},{C}} \:{from}\:{s}! \\ $$

Commented by ajfour last updated on 27/Jun/19

say if  s=2(√(15))  ⇒ h=1, k=11, p=−12, q=34  ⇒ x^3 −3x^2 −12x+34=0    x_A = x_1 ≈ 2.61323    x_B = x_2 ≈ 3.8056     x_C = x_3 ≈ −3.41883  .

$${say}\:{if}\:\:{s}=\mathrm{2}\sqrt{\mathrm{15}} \\ $$$$\Rightarrow\:{h}=\mathrm{1},\:{k}=\mathrm{11},\:{p}=−\mathrm{12},\:{q}=\mathrm{34} \\ $$$$\Rightarrow\:{x}^{\mathrm{3}} −\mathrm{3}{x}^{\mathrm{2}} −\mathrm{12}{x}+\mathrm{34}=\mathrm{0} \\ $$$$\:\:{x}_{{A}} =\:{x}_{\mathrm{1}} \approx\:\mathrm{2}.\mathrm{61323} \\ $$$$\:\:{x}_{{B}} =\:{x}_{\mathrm{2}} \approx\:\mathrm{3}.\mathrm{8056} \\ $$$$\:\:\:{x}_{{C}} =\:{x}_{\mathrm{3}} \approx\:−\mathrm{3}.\mathrm{41883}\:\:. \\ $$

Commented by ajfour last updated on 27/Jun/19

Thank you sir, it only needed our focus on center of triangle which is centroid as well as circumcenter.

Commented by mr W last updated on 28/Jun/19

a stroke of genius!

$${a}\:{stroke}\:{of}\:{genius}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com