Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 62895 by Tawa1 last updated on 26/Jun/19

Commented by Tony Lin last updated on 26/Jun/19

a^2 +b^2 +c^2 =(5/2)  ⇒a=±(√(1/2)), b=±(√(1/2)), c=±(√(3/2))  ∵ ∣ab∣<∣bc∣=∣ac∣  ∴ min(ab+bc+ac)  ⇒when ab>0, bc<0, ac<0  min(ab+bc+ac)=(1/2)−((√3)/2)−((√3)/2)=((1−2(√3))/2)

$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} =\frac{\mathrm{5}}{\mathrm{2}} \\ $$$$\Rightarrow{a}=\pm\sqrt{\frac{\mathrm{1}}{\mathrm{2}}},\:{b}=\pm\sqrt{\frac{\mathrm{1}}{\mathrm{2}}},\:{c}=\pm\sqrt{\frac{\mathrm{3}}{\mathrm{2}}} \\ $$$$\because\:\mid{ab}\mid<\mid{bc}\mid=\mid{ac}\mid \\ $$$$\therefore\:{min}\left({ab}+{bc}+{ac}\right) \\ $$$$\Rightarrow{when}\:{ab}>\mathrm{0},\:{bc}<\mathrm{0},\:{ac}<\mathrm{0} \\ $$$${min}\left({ab}+{bc}+{ac}\right)=\frac{\mathrm{1}}{\mathrm{2}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}=\frac{\mathrm{1}−\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$

Commented by Tawa1 last updated on 26/Jun/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Answered by Kunal12588 last updated on 26/Jun/19

(2)−(1)  c^2 −a^2 =1  c^2 +a^2 =2  ⇒c^2 =(3/2), a^2 =(1/2)  ⇒c=±((√6)/2), a=±((√2)/2)  ⇒b=±((√2)/2)  ab+bc+ca=k  a<0,b<0,c<0  ⇒k=max  a<0,b<0,c>0  ⇒k=(1/2)−((√3)/2)−((√3)/2)=0.5−1.732=−1.232  a<0,b>0,c>0  ⇒k=−(1/2)+((√3)/2)−((√3)/2)=−0.5  a<0,b>0,c<0 ⇒k=−(1/2)−((√3)/2)+((√3)/2)=−0.5  a>0,b<0,c<0 ⇒k=−(1/2)+((√3)/2)−((√3)/2)=−0.5  a>0,b<0,c>0 ⇒k=−(1/2)−((√3)/2)+((√3)/2)=−0.5  a>0,b>0,c<0 ⇒k=(1/2)−((√3)/2)−((√3)/2)=−1.232  a>0,b>0,c>0  ⇒k=max  min(ab+bc+ca)=((1−2(√3))/2)

$$\left(\mathrm{2}\right)−\left(\mathrm{1}\right) \\ $$$${c}^{\mathrm{2}} −{a}^{\mathrm{2}} =\mathrm{1} \\ $$$${c}^{\mathrm{2}} +{a}^{\mathrm{2}} =\mathrm{2} \\ $$$$\Rightarrow{c}^{\mathrm{2}} =\frac{\mathrm{3}}{\mathrm{2}},\:{a}^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow{c}=\pm\frac{\sqrt{\mathrm{6}}}{\mathrm{2}},\:{a}=\pm\frac{\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$$$\Rightarrow{b}=\pm\frac{\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$$${ab}+{bc}+{ca}={k} \\ $$$${a}<\mathrm{0},{b}<\mathrm{0},{c}<\mathrm{0}\:\:\Rightarrow{k}={max} \\ $$$${a}<\mathrm{0},{b}<\mathrm{0},{c}>\mathrm{0}\:\:\Rightarrow{k}=\frac{\mathrm{1}}{\mathrm{2}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}=\mathrm{0}.\mathrm{5}−\mathrm{1}.\mathrm{732}=−\mathrm{1}.\mathrm{232} \\ $$$${a}<\mathrm{0},{b}>\mathrm{0},{c}>\mathrm{0}\:\:\Rightarrow{k}=−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}=−\mathrm{0}.\mathrm{5} \\ $$$${a}<\mathrm{0},{b}>\mathrm{0},{c}<\mathrm{0}\:\Rightarrow{k}=−\frac{\mathrm{1}}{\mathrm{2}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}=−\mathrm{0}.\mathrm{5} \\ $$$${a}>\mathrm{0},{b}<\mathrm{0},{c}<\mathrm{0}\:\Rightarrow{k}=−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}=−\mathrm{0}.\mathrm{5} \\ $$$${a}>\mathrm{0},{b}<\mathrm{0},{c}>\mathrm{0}\:\Rightarrow{k}=−\frac{\mathrm{1}}{\mathrm{2}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}=−\mathrm{0}.\mathrm{5} \\ $$$${a}>\mathrm{0},{b}>\mathrm{0},{c}<\mathrm{0}\:\Rightarrow{k}=\frac{\mathrm{1}}{\mathrm{2}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}=−\mathrm{1}.\mathrm{232} \\ $$$${a}>\mathrm{0},{b}>\mathrm{0},{c}>\mathrm{0}\:\:\Rightarrow{k}={max} \\ $$$${min}\left({ab}+{bc}+{ca}\right)=\frac{\mathrm{1}−\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$

Commented by Tawa1 last updated on 26/Jun/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com