Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 62861 by ajfour last updated on 26/Jun/19

Commented by mr W last updated on 26/Jun/19

very hard task sir, maybe not  possible to solve.

$${very}\:{hard}\:{task}\:{sir},\:{maybe}\:{not} \\ $$$${possible}\:{to}\:{solve}. \\ $$

Commented by ajfour last updated on 26/Jun/19

seriously Sir, no matter what i try,  it dont simplify, biquadratic  trouble.

$${seriously}\:{Sir},\:{no}\:{matter}\:{what}\:{i}\:{try}, \\ $$$${it}\:{dont}\:{simplify},\:{biquadratic} \\ $$$${trouble}. \\ $$

Commented by ajfour last updated on 26/Jun/19

Find x_A (A being lowermost point)  in terms of s.

$${Find}\:{x}_{{A}} \left({A}\:{being}\:{lowermost}\:{point}\right) \\ $$$${in}\:{terms}\:{of}\:{s}. \\ $$

Commented by ajfour last updated on 26/Jun/19

Good question, GREAT solution,  Sir. Truly above all praise, thanks a lot!

$${Good}\:{question},\:\mathcal{GREAT}\:{solution}, \\ $$$${Sir}.\:{Truly}\:{above}\:{all}\:{praise},\:{thanks}\:{a}\:{lot}! \\ $$

Commented by MJS last updated on 26/Jun/19

you′re welcome as always  I like your geometrical problems

$$\mathrm{you}'\mathrm{re}\:\mathrm{welcome}\:\mathrm{as}\:\mathrm{always} \\ $$$$\mathrm{I}\:\mathrm{like}\:\mathrm{your}\:\mathrm{geometrical}\:\mathrm{problems} \\ $$

Commented by mr W last updated on 26/Jun/19

thanks to MJS sir! i think it is  impossible to solve the problem with  given length s, since it leads always  to a quartic equation which may have  max. 4 roots. actually i also considered  a way to solve by assuming the  position of BC and then determine  the point A and the length s. i think  we can then avoid the quartic equations.  but i had no time to try it out today.  i′ll take a try this evening and see if  i can get the same result as yours.

$${thanks}\:{to}\:{MJS}\:{sir}!\:{i}\:{think}\:{it}\:{is} \\ $$$${impossible}\:{to}\:{solve}\:{the}\:{problem}\:{with} \\ $$$${given}\:{length}\:{s},\:{since}\:{it}\:{leads}\:{always} \\ $$$${to}\:{a}\:{quartic}\:{equation}\:{which}\:{may}\:{have} \\ $$$${max}.\:\mathrm{4}\:{roots}.\:{actually}\:{i}\:{also}\:{considered} \\ $$$${a}\:{way}\:{to}\:{solve}\:{by}\:{assuming}\:{the} \\ $$$${position}\:{of}\:{BC}\:{and}\:{then}\:{determine} \\ $$$${the}\:{point}\:{A}\:{and}\:{the}\:{length}\:{s}.\:{i}\:{think} \\ $$$${we}\:{can}\:{then}\:{avoid}\:{the}\:{quartic}\:{equations}. \\ $$$${but}\:{i}\:{had}\:{no}\:{time}\:{to}\:{try}\:{it}\:{out}\:{today}. \\ $$$${i}'{ll}\:{take}\:{a}\:{try}\:{this}\:{evening}\:{and}\:{see}\:{if} \\ $$$${i}\:{can}\:{get}\:{the}\:{same}\:{result}\:{as}\:{yours}. \\ $$

Commented by mr W last updated on 27/Jun/19

MJS sir: can you please check:  i couldn′t get the same result as you.  according to your result ((√3)/3)<a≤((√(...))/3)  and i got 0≤m<((√3)/3)   (m=your a).  we know m=0 is possible, because  the smallest equilateral triangle is  s=2(√3) with A(0,0), B((√3),3), C(−(√3),3).  i.e. 2(√3)≤s<∞.  but this case is not included in your  result, since you got ((√3)/3)<a≤((√(...))/3) and  0≤s<∞.

$${MJS}\:{sir}:\:{can}\:{you}\:{please}\:{check}: \\ $$$${i}\:{couldn}'{t}\:{get}\:{the}\:{same}\:{result}\:{as}\:{you}. \\ $$$${according}\:{to}\:{your}\:{result}\:\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}<{a}\leqslant\frac{\sqrt{...}}{\mathrm{3}} \\ $$$${and}\:{i}\:{got}\:\mathrm{0}\leqslant{m}<\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}\:\:\:\left({m}={your}\:{a}\right). \\ $$$${we}\:{know}\:{m}=\mathrm{0}\:{is}\:{possible},\:{because} \\ $$$${the}\:{smallest}\:{equilateral}\:{triangle}\:{is} \\ $$$${s}=\mathrm{2}\sqrt{\mathrm{3}}\:{with}\:{A}\left(\mathrm{0},\mathrm{0}\right),\:{B}\left(\sqrt{\mathrm{3}},\mathrm{3}\right),\:{C}\left(−\sqrt{\mathrm{3}},\mathrm{3}\right). \\ $$$${i}.{e}.\:\mathrm{2}\sqrt{\mathrm{3}}\leqslant{s}<\infty. \\ $$$${but}\:{this}\:{case}\:{is}\:{not}\:{included}\:{in}\:{your} \\ $$$${result},\:{since}\:{you}\:{got}\:\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}<{a}\leqslant\frac{\sqrt{...}}{\mathrm{3}}\:{and} \\ $$$$\mathrm{0}\leqslant{s}<\infty. \\ $$

Commented by mr W last updated on 27/Jun/19

Commented by MJS last updated on 27/Jun/19

I made a mistake, hopefully corrected  everything. it now looks as if we can solve  it for a=f(s). it leads to a polynome of  3^(rd)  degree for a^2 . please check my work, I′ve  been in a hurry...

$$\mathrm{I}\:\mathrm{made}\:\mathrm{a}\:\mathrm{mistake},\:\mathrm{hopefully}\:\mathrm{corrected} \\ $$$$\mathrm{everything}.\:\mathrm{it}\:\mathrm{now}\:\mathrm{looks}\:\mathrm{as}\:\mathrm{if}\:\mathrm{we}\:\mathrm{can}\:\mathrm{solve} \\ $$$$\mathrm{it}\:\mathrm{for}\:{a}={f}\left({s}\right).\:\mathrm{it}\:\mathrm{leads}\:\mathrm{to}\:\mathrm{a}\:\mathrm{polynome}\:\mathrm{of} \\ $$$$\mathrm{3}^{\mathrm{rd}} \:\mathrm{degree}\:\mathrm{for}\:{a}^{\mathrm{2}} .\:\mathrm{please}\:\mathrm{check}\:\mathrm{my}\:\mathrm{work},\:\mathrm{I}'\mathrm{ve} \\ $$$$\mathrm{been}\:\mathrm{in}\:\mathrm{a}\:\mathrm{hurry}... \\ $$

Commented by mr W last updated on 27/Jun/19

thank you sir!  i can not get your formula for b,  but it seems to be correct.

$${thank}\:{you}\:{sir}! \\ $$$${i}\:{can}\:{not}\:{get}\:{your}\:{formula}\:{for}\:{b}, \\ $$$${but}\:{it}\:{seems}\:{to}\:{be}\:{correct}. \\ $$

Answered by ajfour last updated on 26/Jun/19

A(a,a^2 ), B(b,b^2 ) , C(c,c^2 )   (a−b)^2 +(a^2 −b^2 )^2 =s^2    (b−c)^2 +(b^2 −c^2 )^2 =s^2    (c−a)^2 +(c^2 −a^2 )^2 =s^2   .................

$${A}\left({a},{a}^{\mathrm{2}} \right),\:{B}\left({b},{b}^{\mathrm{2}} \right)\:,\:{C}\left({c},{c}^{\mathrm{2}} \right) \\ $$$$\:\left({a}−{b}\right)^{\mathrm{2}} +\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)^{\mathrm{2}} ={s}^{\mathrm{2}} \\ $$$$\:\left({b}−{c}\right)^{\mathrm{2}} +\left({b}^{\mathrm{2}} −{c}^{\mathrm{2}} \right)^{\mathrm{2}} ={s}^{\mathrm{2}} \\ $$$$\:\left({c}−{a}\right)^{\mathrm{2}} +\left({c}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)^{\mathrm{2}} ={s}^{\mathrm{2}} \\ $$$$................. \\ $$

Answered by mr W last updated on 26/Jun/19

Commented by mr W last updated on 27/Jun/19

D(0,h)  m=tan θ>0  eqn. of BC:  y=h+mx  intersection BC with parabola:  y=x^2 =h+mx  ⇒x^2 −mx−h=0  x_C =((m−(√(m^2 +4h)))/2)  x_B =((m+(√(m^2 +4h)))/2)  midpoint of BC=M  x_M =((x_C +x_B )/2)=(m/2)  y_M =((x_C ^2 +x_B ^2 )/2)=(((x_C +x_B )^2 −2x_C x_B )/2)=((m^2 +2h)/2)  eqn. of bisector of BC:  y−y_M =−(1/m)(x−x_M )  y−((m^2 +2h)/2)=−(1/m)(x−(m/2))  ⇒y=−(x/m)+((m^2 +2h+1)/2)  intersection of bisector with parabola:  y=x^2 =−(x/m)+((m^2 +2h+1)/2)  ⇒x^2 +(x/m)−((m^2 +2h+1)/2)=0  x_A =(1/(2m))[−1+(√(1+2m^2 (m^2 +2h+1)))]  y_A =(1/(2m^2 ))[1+m^2 (m^2 +2h+1)−(√(1+2m^2 (m^2 +2h+1)))]  ((√3)/2)×BC=MA  ⇒((√3)/2)(x_B −x_C )=y_M −y_A   ((√3)/2)(√(m^2 +4h))=(1/2)[m^2 +2h−(1/m^2 )−m^2 −2h−1+(1/m)(√((1/m^2 )+2(m^2 +2h+1)))]  ⇒m^2 (√(3(m^2 +4h)))=(√(1+2m^2 (m^2 +2h+1)))−(1+m^2 )  ⇒0≤m<((√3)/3)  ⇒h≥3    3m^4 (m^2 +4h)=[1+2m^2 (m^2 +2h+1)+1+2m^2 +m^4 −2(1+m^2 )(√(1+2m^2 (m^2 +2h+1)))]  2(1+m^2 )(√(1+2m^2 (m^2 +2h+1)))=2+4m^2 +3m^4 (1−m^2 )+4m^2 (1−3m^2 )h  ⇒16m^4 (1−3m^2 )^2 h^2 +8m^2 {(1−3m^2 )(2+4m^2 +3m^4 −3m^6 )−2(1+m^2 )^2 }h+{(2+4m^2 +3m^4 −3m^6 )^2 −4(1+m^2 )^2 (1+2m^2 +2m^4 )}=0  ⇒16(1−3m^2 )^2 h^2 +8(9m^6 −12m^4 −11m^2 −6)h+m^2 (9m^6 −18m^4 −23m^2 −12)=0  ⇒h=(((−9m^6 +12m^4 +11m^2 +6)+(√((9m^6 −12m^4 −11m^2 −6)^2 −m^2 (1−3m^2 )^2 (9m^6 −18m^4 −23m^2 −12))))/(4(1−3m^2 )^2 ))  ... i stop here , hope it′s correct, too hard to simplify ...    s=(√(1+m^2 ))(x_B −x_C )  ⇒s=(√((1+m^2 )(m^2 +4h)))  ⇒s≥2(√3)

$${D}\left(\mathrm{0},{h}\right) \\ $$$${m}=\mathrm{tan}\:\theta>\mathrm{0} \\ $$$${eqn}.\:{of}\:{BC}: \\ $$$${y}={h}+{mx} \\ $$$${intersection}\:{BC}\:{with}\:{parabola}: \\ $$$${y}={x}^{\mathrm{2}} ={h}+{mx} \\ $$$$\Rightarrow{x}^{\mathrm{2}} −{mx}−{h}=\mathrm{0} \\ $$$${x}_{{C}} =\frac{{m}−\sqrt{{m}^{\mathrm{2}} +\mathrm{4}{h}}}{\mathrm{2}} \\ $$$${x}_{{B}} =\frac{{m}+\sqrt{{m}^{\mathrm{2}} +\mathrm{4}{h}}}{\mathrm{2}} \\ $$$${midpoint}\:{of}\:{BC}={M} \\ $$$${x}_{{M}} =\frac{{x}_{{C}} +{x}_{{B}} }{\mathrm{2}}=\frac{{m}}{\mathrm{2}} \\ $$$${y}_{{M}} =\frac{{x}_{{C}} ^{\mathrm{2}} +{x}_{{B}} ^{\mathrm{2}} }{\mathrm{2}}=\frac{\left({x}_{{C}} +{x}_{{B}} \right)^{\mathrm{2}} −\mathrm{2}{x}_{{C}} {x}_{{B}} }{\mathrm{2}}=\frac{{m}^{\mathrm{2}} +\mathrm{2}{h}}{\mathrm{2}} \\ $$$${eqn}.\:{of}\:{bisector}\:{of}\:{BC}: \\ $$$${y}−{y}_{{M}} =−\frac{\mathrm{1}}{{m}}\left({x}−{x}_{{M}} \right) \\ $$$${y}−\frac{{m}^{\mathrm{2}} +\mathrm{2}{h}}{\mathrm{2}}=−\frac{\mathrm{1}}{{m}}\left({x}−\frac{{m}}{\mathrm{2}}\right) \\ $$$$\Rightarrow{y}=−\frac{{x}}{{m}}+\frac{{m}^{\mathrm{2}} +\mathrm{2}{h}+\mathrm{1}}{\mathrm{2}} \\ $$$${intersection}\:{of}\:{bisector}\:{with}\:{parabola}: \\ $$$${y}={x}^{\mathrm{2}} =−\frac{{x}}{{m}}+\frac{{m}^{\mathrm{2}} +\mathrm{2}{h}+\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow{x}^{\mathrm{2}} +\frac{{x}}{{m}}−\frac{{m}^{\mathrm{2}} +\mathrm{2}{h}+\mathrm{1}}{\mathrm{2}}=\mathrm{0} \\ $$$${x}_{{A}} =\frac{\mathrm{1}}{\mathrm{2}{m}}\left[−\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{2}{m}^{\mathrm{2}} \left({m}^{\mathrm{2}} +\mathrm{2}{h}+\mathrm{1}\right)}\right] \\ $$$${y}_{{A}} =\frac{\mathrm{1}}{\mathrm{2}{m}^{\mathrm{2}} }\left[\mathrm{1}+{m}^{\mathrm{2}} \left({m}^{\mathrm{2}} +\mathrm{2}{h}+\mathrm{1}\right)−\sqrt{\mathrm{1}+\mathrm{2}{m}^{\mathrm{2}} \left({m}^{\mathrm{2}} +\mathrm{2}{h}+\mathrm{1}\right)}\right] \\ $$$$\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}×{BC}={MA} \\ $$$$\Rightarrow\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\left({x}_{{B}} −{x}_{{C}} \right)={y}_{{M}} −{y}_{{A}} \\ $$$$\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\sqrt{{m}^{\mathrm{2}} +\mathrm{4}{h}}=\frac{\mathrm{1}}{\mathrm{2}}\left[{m}^{\mathrm{2}} +\mathrm{2}{h}−\frac{\mathrm{1}}{{m}^{\mathrm{2}} }−{m}^{\mathrm{2}} −\mathrm{2}{h}−\mathrm{1}+\frac{\mathrm{1}}{{m}}\sqrt{\frac{\mathrm{1}}{{m}^{\mathrm{2}} }+\mathrm{2}\left({m}^{\mathrm{2}} +\mathrm{2}{h}+\mathrm{1}\right)}\right] \\ $$$$\Rightarrow{m}^{\mathrm{2}} \sqrt{\mathrm{3}\left({m}^{\mathrm{2}} +\mathrm{4}{h}\right)}=\sqrt{\mathrm{1}+\mathrm{2}{m}^{\mathrm{2}} \left({m}^{\mathrm{2}} +\mathrm{2}{h}+\mathrm{1}\right)}−\left(\mathrm{1}+{m}^{\mathrm{2}} \right) \\ $$$$\Rightarrow\mathrm{0}\leqslant{m}<\frac{\sqrt{\mathrm{3}}}{\mathrm{3}} \\ $$$$\Rightarrow{h}\geqslant\mathrm{3} \\ $$$$ \\ $$$$\mathrm{3}{m}^{\mathrm{4}} \left({m}^{\mathrm{2}} +\mathrm{4}{h}\right)=\left[\mathrm{1}+\mathrm{2}{m}^{\mathrm{2}} \left({m}^{\mathrm{2}} +\mathrm{2}{h}+\mathrm{1}\right)+\mathrm{1}+\mathrm{2}{m}^{\mathrm{2}} +{m}^{\mathrm{4}} −\mathrm{2}\left(\mathrm{1}+{m}^{\mathrm{2}} \right)\sqrt{\mathrm{1}+\mathrm{2}{m}^{\mathrm{2}} \left({m}^{\mathrm{2}} +\mathrm{2}{h}+\mathrm{1}\right)}\right] \\ $$$$\mathrm{2}\left(\mathrm{1}+{m}^{\mathrm{2}} \right)\sqrt{\mathrm{1}+\mathrm{2}{m}^{\mathrm{2}} \left({m}^{\mathrm{2}} +\mathrm{2}{h}+\mathrm{1}\right)}=\mathrm{2}+\mathrm{4}{m}^{\mathrm{2}} +\mathrm{3}{m}^{\mathrm{4}} \left(\mathrm{1}−{m}^{\mathrm{2}} \right)+\mathrm{4}{m}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{3}{m}^{\mathrm{2}} \right){h} \\ $$$$\Rightarrow\mathrm{16}{m}^{\mathrm{4}} \left(\mathrm{1}−\mathrm{3}{m}^{\mathrm{2}} \right)^{\mathrm{2}} {h}^{\mathrm{2}} +\mathrm{8}{m}^{\mathrm{2}} \left\{\left(\mathrm{1}−\mathrm{3}{m}^{\mathrm{2}} \right)\left(\mathrm{2}+\mathrm{4}{m}^{\mathrm{2}} +\mathrm{3}{m}^{\mathrm{4}} −\mathrm{3}{m}^{\mathrm{6}} \right)−\mathrm{2}\left(\mathrm{1}+{m}^{\mathrm{2}} \right)^{\mathrm{2}} \right\}{h}+\left\{\left(\mathrm{2}+\mathrm{4}{m}^{\mathrm{2}} +\mathrm{3}{m}^{\mathrm{4}} −\mathrm{3}{m}^{\mathrm{6}} \right)^{\mathrm{2}} −\mathrm{4}\left(\mathrm{1}+{m}^{\mathrm{2}} \right)^{\mathrm{2}} \left(\mathrm{1}+\mathrm{2}{m}^{\mathrm{2}} +\mathrm{2}{m}^{\mathrm{4}} \right)\right\}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{16}\left(\mathrm{1}−\mathrm{3}{m}^{\mathrm{2}} \right)^{\mathrm{2}} {h}^{\mathrm{2}} +\mathrm{8}\left(\mathrm{9}{m}^{\mathrm{6}} −\mathrm{12}{m}^{\mathrm{4}} −\mathrm{11}{m}^{\mathrm{2}} −\mathrm{6}\right){h}+{m}^{\mathrm{2}} \left(\mathrm{9}{m}^{\mathrm{6}} −\mathrm{18}{m}^{\mathrm{4}} −\mathrm{23}{m}^{\mathrm{2}} −\mathrm{12}\right)=\mathrm{0} \\ $$$$\Rightarrow{h}=\frac{\left(−\mathrm{9}{m}^{\mathrm{6}} +\mathrm{12}{m}^{\mathrm{4}} +\mathrm{11}{m}^{\mathrm{2}} +\mathrm{6}\right)+\sqrt{\left(\mathrm{9}{m}^{\mathrm{6}} −\mathrm{12}{m}^{\mathrm{4}} −\mathrm{11}{m}^{\mathrm{2}} −\mathrm{6}\right)^{\mathrm{2}} −{m}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{3}{m}^{\mathrm{2}} \right)^{\mathrm{2}} \left(\mathrm{9}{m}^{\mathrm{6}} −\mathrm{18}{m}^{\mathrm{4}} −\mathrm{23}{m}^{\mathrm{2}} −\mathrm{12}\right)}}{\mathrm{4}\left(\mathrm{1}−\mathrm{3}{m}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$$...\:{i}\:{stop}\:{here}\:,\:{hope}\:{it}'{s}\:{correct},\:{too}\:{hard}\:{to}\:{simplify}\:... \\ $$$$ \\ $$$${s}=\sqrt{\mathrm{1}+{m}^{\mathrm{2}} }\left({x}_{{B}} −{x}_{{C}} \right) \\ $$$$\Rightarrow{s}=\sqrt{\left(\mathrm{1}+{m}^{\mathrm{2}} \right)\left({m}^{\mathrm{2}} +\mathrm{4}{h}\right)} \\ $$$$\Rightarrow{s}\geqslant\mathrm{2}\sqrt{\mathrm{3}} \\ $$

Commented by ajfour last updated on 27/Jun/19

sir, you have obtained h=f(m)  but what about m, howz that   found?  great effort Sir, thanks.

$${sir},\:{you}\:{have}\:{obtained}\:{h}={f}\left({m}\right) \\ $$$${but}\:{what}\:{about}\:{m},\:{howz}\:{that}\: \\ $$$${found}? \\ $$$${great}\:{effort}\:{Sir},\:{thanks}. \\ $$

Commented by mr W last updated on 27/Jun/19

i tried to use m as base parameter,  then find h(m) and s(m). this method  is easier, since we only need to solve  quadratic equations.  we find in this  way: s≥2(√3) and 0≤m<(1/(√3)).

$${i}\:{tried}\:{to}\:{use}\:{m}\:{as}\:{base}\:{parameter}, \\ $$$${then}\:{find}\:{h}\left({m}\right)\:{and}\:{s}\left({m}\right).\:{this}\:{method} \\ $$$${is}\:{easier},\:{since}\:{we}\:{only}\:{need}\:{to}\:{solve} \\ $$$${quadratic}\:{equations}.\:\:{we}\:{find}\:{in}\:{this} \\ $$$${way}:\:{s}\geqslant\mathrm{2}\sqrt{\mathrm{3}}\:{and}\:\mathrm{0}\leqslant{m}<\frac{\mathrm{1}}{\sqrt{\mathrm{3}}}. \\ $$

Commented by mr W last updated on 27/Jun/19

h=h(m) could be more simplified as  MJS sir did. but i havn′t reached that.

$${h}={h}\left({m}\right)\:{could}\:{be}\:{more}\:{simplified}\:{as} \\ $$$${MJS}\:{sir}\:{did}.\:{but}\:{i}\:{havn}'{t}\:{reached}\:{that}. \\ $$

Answered by MJS last updated on 27/Jun/19

Terms of Service

Privacy Policy

Contact: info@tinkutara.com