Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 62659 by mathmax by abdo last updated on 24/Jun/19

calculate  lim_(n→+∞)     (((n!)^n )/n^(n!) )

$${calculate}\:\:{lim}_{{n}\rightarrow+\infty} \:\:\:\:\frac{\left({n}!\right)^{{n}} }{{n}^{{n}!} } \\ $$

Commented by abdo mathsup 649 cc last updated on 24/Jun/19

let A_n =(((n!)^n )/n^(n!) ) ⇒ln(A_n ) =nln(n!)−n!ln(n)   we have for n∈V(+∞) n! ∼n^(n ) e^(−n) (√(2πn)) ⇒  ln(n!)∼nln(n)+n +(1/2)ln(2πn)  ⇒  ln(A_n )∼ n^2 ln(n)+n^(2 )  +(n/2)ln(2πn)−n^(n ) e^(−n) (√(2πn))ln(n)  =n^n { ((ln(n))/n^(n−2) ) +(1/n^(n−2) ) + ((ln(2πn))/(2n^(n−1) )) −e^(−n) (((√(2πn))ln(n))/n^n )}→0  (n→+∞) ⇒lim_(n→+∞)  A_n =1 .

$${let}\:{A}_{{n}} =\frac{\left({n}!\right)^{{n}} }{{n}^{{n}!} }\:\Rightarrow{ln}\left({A}_{{n}} \right)\:={nln}\left({n}!\right)−{n}!{ln}\left({n}\right)\: \\ $$$${we}\:{have}\:{for}\:{n}\in{V}\left(+\infty\right)\:{n}!\:\sim{n}^{{n}\:} {e}^{−{n}} \sqrt{\mathrm{2}\pi{n}}\:\Rightarrow \\ $$$${ln}\left({n}!\right)\sim{nln}\left({n}\right)+{n}\:+\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{2}\pi{n}\right)\:\:\Rightarrow \\ $$$${ln}\left({A}_{{n}} \right)\sim\:{n}^{\mathrm{2}} {ln}\left({n}\right)+{n}^{\mathrm{2}\:} \:+\frac{{n}}{\mathrm{2}}{ln}\left(\mathrm{2}\pi{n}\right)−{n}^{{n}\:} {e}^{−{n}} \sqrt{\mathrm{2}\pi{n}}{ln}\left({n}\right) \\ $$$$={n}^{{n}} \left\{\:\frac{{ln}\left({n}\right)}{{n}^{{n}−\mathrm{2}} }\:+\frac{\mathrm{1}}{{n}^{{n}−\mathrm{2}} }\:+\:\frac{{ln}\left(\mathrm{2}\pi{n}\right)}{\mathrm{2}{n}^{{n}−\mathrm{1}} }\:−{e}^{−{n}} \frac{\sqrt{\mathrm{2}\pi{n}}{ln}\left({n}\right)}{{n}^{{n}} }\right\}\rightarrow\mathrm{0} \\ $$$$\left({n}\rightarrow+\infty\right)\:\Rightarrow{lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} =\mathrm{1}\:. \\ $$

Commented by abdo mathsup 649 cc last updated on 24/Jun/19

ln(n!)∼nln(n)−n +(1/2)ln(2πn)

$${ln}\left({n}!\right)\sim{nln}\left({n}\right)−{n}\:+\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{2}\pi{n}\right) \\ $$

Commented by MJS last updated on 24/Jun/19

nln (n^n e^(−n) (√(2πn))) =(n^2 +(n/2))ln n −n^2 +((ln 2π)/2)n  (n^2 +(n/2))ln n −n^2 +((ln 2π)/2)n−n^n e^(−n) (√(2πn)) ln n=  =(n^2 +(n/2)−((n/e))^n (√(2πn)))ln n −n^2 +((ln 2π)/2)n  and because of −((n/e))^n (√(2πn)) ln n this approaches  not 0 but −∞ ⇒ lim_(n→+∞) A_n =e^(−∞) =0

$${n}\mathrm{ln}\:\left({n}^{{n}} \mathrm{e}^{−{n}} \sqrt{\mathrm{2}\pi{n}}\right)\:=\left({n}^{\mathrm{2}} +\frac{{n}}{\mathrm{2}}\right)\mathrm{ln}\:{n}\:−{n}^{\mathrm{2}} +\frac{\mathrm{ln}\:\mathrm{2}\pi}{\mathrm{2}}{n} \\ $$$$\left({n}^{\mathrm{2}} +\frac{{n}}{\mathrm{2}}\right)\mathrm{ln}\:{n}\:−{n}^{\mathrm{2}} +\frac{\mathrm{ln}\:\mathrm{2}\pi}{\mathrm{2}}{n}−{n}^{{n}} \mathrm{e}^{−{n}} \sqrt{\mathrm{2}\pi{n}}\:\mathrm{ln}\:{n}= \\ $$$$=\left({n}^{\mathrm{2}} +\frac{{n}}{\mathrm{2}}−\left(\frac{{n}}{\mathrm{e}}\right)^{{n}} \sqrt{\mathrm{2}\pi{n}}\right)\mathrm{ln}\:{n}\:−{n}^{\mathrm{2}} +\frac{\mathrm{ln}\:\mathrm{2}\pi}{\mathrm{2}}{n} \\ $$$$\mathrm{and}\:\mathrm{because}\:\mathrm{of}\:−\left(\frac{{n}}{\mathrm{e}}\right)^{{n}} \sqrt{\mathrm{2}\pi{n}}\:\mathrm{ln}\:{n}\:\mathrm{this}\:\mathrm{approaches} \\ $$$$\mathrm{not}\:\mathrm{0}\:\mathrm{but}\:−\infty\:\Rightarrow\:\underset{{n}\rightarrow+\infty} {\mathrm{lim}}{A}_{{n}} =\mathrm{e}^{−\infty} =\mathrm{0} \\ $$

Answered by MJS last updated on 24/Jun/19

(((n!)^n )/n^(n!) )=f(n)  f(1)=(1/1)=1  f(2)=(4/4)=1  f(3)=((216)/(729))=(8/(27))  f(4)=((331776)/(281474976710656))=((81)/(68719476736))  ...  f(∞)=0

$$\frac{\left({n}!\right)^{{n}} }{{n}^{{n}!} }={f}\left({n}\right) \\ $$$${f}\left(\mathrm{1}\right)=\frac{\mathrm{1}}{\mathrm{1}}=\mathrm{1} \\ $$$${f}\left(\mathrm{2}\right)=\frac{\mathrm{4}}{\mathrm{4}}=\mathrm{1} \\ $$$${f}\left(\mathrm{3}\right)=\frac{\mathrm{216}}{\mathrm{729}}=\frac{\mathrm{8}}{\mathrm{27}} \\ $$$${f}\left(\mathrm{4}\right)=\frac{\mathrm{331776}}{\mathrm{281474976710656}}=\frac{\mathrm{81}}{\mathrm{68719476736}} \\ $$$$... \\ $$$${f}\left(\infty\right)=\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com