Question and Answers Forum

All Questions      Topic List

Vector Questions

Previous in All Question      Next in All Question      

Previous in Vector      Next in Vector      

Question Number 62624 by Jmasanja last updated on 23/Jun/19

Answered by MJS last updated on 23/Jun/19

it′s the same as before, they all are similar  P= (((9cos 270°)),((9sin 270°)) )  Q= (((10cos 45°)),((10sin 45°)) )  R= (((10cos 135°)),((10sin 135°)) )  P= ((0),((−9)) )  Q= (((5(√2))),((5(√2))) )  R= (((−5(√2))),((5(√2))) )  P+Q+R= ((0),((10(√2)−9)) )

$$\mathrm{it}'\mathrm{s}\:\mathrm{the}\:\mathrm{same}\:\mathrm{as}\:\mathrm{before},\:\mathrm{they}\:\mathrm{all}\:\mathrm{are}\:\mathrm{similar} \\ $$$${P}=\begin{pmatrix}{\mathrm{9cos}\:\mathrm{270}°}\\{\mathrm{9sin}\:\mathrm{270}°}\end{pmatrix}\:\:{Q}=\begin{pmatrix}{\mathrm{10cos}\:\mathrm{45}°}\\{\mathrm{10sin}\:\mathrm{45}°}\end{pmatrix}\:\:{R}=\begin{pmatrix}{\mathrm{10cos}\:\mathrm{135}°}\\{\mathrm{10sin}\:\mathrm{135}°}\end{pmatrix} \\ $$$${P}=\begin{pmatrix}{\mathrm{0}}\\{−\mathrm{9}}\end{pmatrix}\:\:{Q}=\begin{pmatrix}{\mathrm{5}\sqrt{\mathrm{2}}}\\{\mathrm{5}\sqrt{\mathrm{2}}}\end{pmatrix}\:\:{R}=\begin{pmatrix}{−\mathrm{5}\sqrt{\mathrm{2}}}\\{\mathrm{5}\sqrt{\mathrm{2}}}\end{pmatrix} \\ $$$${P}+{Q}+{R}=\begin{pmatrix}{\mathrm{0}}\\{\mathrm{10}\sqrt{\mathrm{2}}−\mathrm{9}}\end{pmatrix} \\ $$

Answered by behi83417@gmail.com last updated on 23/Jun/19

R_(RQ) =2×10cos((90)/2)=20((√2)/2)=10(√2)  R_(esultant) =9↓+10(√2) ↑=5.142↑

$$\mathrm{R}_{\mathrm{RQ}} =\mathrm{2}×\mathrm{10cos}\frac{\mathrm{90}}{\mathrm{2}}=\mathrm{20}\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}=\mathrm{10}\sqrt{\mathrm{2}} \\ $$$$\mathrm{R}_{\mathrm{esultant}} =\mathrm{9}\downarrow+\mathrm{10}\sqrt{\mathrm{2}}\:\uparrow=\mathrm{5}.\mathrm{142}\uparrow \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com