Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 62453 by Tawa1 last updated on 21/Jun/19

∫ (x/(e^x  − 1))dx,            for  x > 0

$$\int\:\frac{\mathrm{x}}{\mathrm{e}^{\mathrm{x}} \:−\:\mathrm{1}}\mathrm{dx},\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{for}\:\:\mathrm{x}\:>\:\mathrm{0} \\ $$

Commented bymathmax by abdo last updated on 21/Jun/19

∫  (x/(e^x −1))dx =∫  ((x e^(−x) )/(1−e^(−x) ))dx =∫  (Σ_(n=0) ^∞  e^(−nx) )xe^(−x)  dx  = Σ_(n=0) ^∞  ∫  x e^(−(n+1)x)  dx =Σ_(n=0) ^∞  A_n   A_n =∫  x e^(−(n+1)x) dx =_((n+1)x =t)      ∫  (t/(n+1)) e^(−t)   (dt/(n+1))  =(1/((n+1)^2 )) ∫  t e^(−t)  dt    and by parts   ∫ t e^(−t)  dt =−te^(−t)  +∫ e^(−t)  dt  =−t e^(−t)  −e^(−t)  =−(t+1)e^(−t)  ⇒  A_n =−(1/((n+1)^2 )){ (t+1)e^(−t)  +c} ⇒Σ_(n=0) ^∞  A_n =−(t+1)e^(−t)  Σ_(n=0) ^∞  (1/((n+1)^2 )) −cΣ_(n=0) ^∞ (1/((n+1)^2 ))  =−(π^2 /6)(t+1)e^(−t)  −(π^2 /6)c  .

$$\int\:\:\frac{{x}}{{e}^{{x}} −\mathrm{1}}{dx}\:=\int\:\:\frac{{x}\:{e}^{−{x}} }{\mathrm{1}−{e}^{−{x}} }{dx}\:=\int\:\:\left(\sum_{{n}=\mathrm{0}} ^{\infty} \:{e}^{−{nx}} \right){xe}^{−{x}} \:{dx} \\ $$ $$=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\int\:\:{x}\:{e}^{−\left({n}+\mathrm{1}\right){x}} \:{dx}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:{A}_{{n}} \\ $$ $${A}_{{n}} =\int\:\:{x}\:{e}^{−\left({n}+\mathrm{1}\right){x}} {dx}\:=_{\left({n}+\mathrm{1}\right){x}\:={t}} \:\:\:\:\:\int\:\:\frac{{t}}{{n}+\mathrm{1}}\:{e}^{−{t}} \:\:\frac{{dt}}{{n}+\mathrm{1}} \\ $$ $$=\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} }\:\int\:\:{t}\:{e}^{−{t}} \:{dt}\:\:\:\:{and}\:{by}\:{parts}\: \\ $$ $$\int\:{t}\:{e}^{−{t}} \:{dt}\:=−{te}^{−{t}} \:+\int\:{e}^{−{t}} \:{dt}\:\:=−{t}\:{e}^{−{t}} \:−{e}^{−{t}} \:=−\left({t}+\mathrm{1}\right){e}^{−{t}} \:\Rightarrow \\ $$ $${A}_{{n}} =−\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} }\left\{\:\left({t}+\mathrm{1}\right){e}^{−{t}} \:+{c}\right\}\:\Rightarrow\sum_{{n}=\mathrm{0}} ^{\infty} \:{A}_{{n}} =−\left({t}+\mathrm{1}\right){e}^{−{t}} \:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} }\:−{c}\sum_{{n}=\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$ $$=−\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\left({t}+\mathrm{1}\right){e}^{−{t}} \:−\frac{\pi^{\mathrm{2}} }{\mathrm{6}}{c}\:\:. \\ $$

Commented byTawa1 last updated on 21/Jun/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented bymathmax by abdo last updated on 22/Jun/19

you are most welcome.

$${you}\:{are}\:{most}\:{welcome}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com