Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 62420 by mathsolverby Abdo last updated on 20/Jun/19

let u_n (x)=(1/n^x ) −∫_n ^(n+1) (dt/t^x )  with x∈[1,2]  1)prove that 0≤ u_n (x)≤(1/n^x )−(1/((n+1)^x )) (n>0)  2)prove that Σ u_n (x)converges  let γ =Σ_(n=1) ^∞  u_n (1)  3)find Σ_(n=1) ^∞ u_n (x) interms of ξ(x)and  1−x  4) prove that the converg.of Σu_n (x)is  uniform  prove that for x∈V(1)  ξ(x) =(1/(x−1)) +γ +o(1)  5) find the value of  Σ_(n=1) ^∞  (((−1)^(n−1) )/n)ln(n)

$${let}\:{u}_{{n}} \left({x}\right)=\frac{\mathrm{1}}{{n}^{{x}} }\:−\int_{{n}} ^{{n}+\mathrm{1}} \frac{{dt}}{{t}^{{x}} }\:\:{with}\:{x}\in\left[\mathrm{1},\mathrm{2}\right] \\ $$ $$\left.\mathrm{1}\right){prove}\:{that}\:\mathrm{0}\leqslant\:{u}_{{n}} \left({x}\right)\leqslant\frac{\mathrm{1}}{{n}^{{x}} }−\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{{x}} }\:\left({n}>\mathrm{0}\right) \\ $$ $$\left.\mathrm{2}\right){prove}\:{that}\:\Sigma\:{u}_{{n}} \left({x}\right){converges} \\ $$ $${let}\:\gamma\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:{u}_{{n}} \left(\mathrm{1}\right) \\ $$ $$\left.\mathrm{3}\right){find}\:\sum_{{n}=\mathrm{1}} ^{\infty} {u}_{{n}} \left({x}\right)\:{interms}\:{of}\:\xi\left({x}\right){and} \\ $$ $$\mathrm{1}−{x} \\ $$ $$\left.\mathrm{4}\right)\:{prove}\:{that}\:{the}\:{converg}.{of}\:\Sigma{u}_{{n}} \left({x}\right){is} \\ $$ $${uniform} \\ $$ $${prove}\:{that}\:{for}\:{x}\in{V}\left(\mathrm{1}\right) \\ $$ $$\xi\left({x}\right)\:=\frac{\mathrm{1}}{{x}−\mathrm{1}}\:+\gamma\:+{o}\left(\mathrm{1}\right) \\ $$ $$\left.\mathrm{5}\right)\:{find}\:{the}\:{value}\:{of}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}}{ln}\left({n}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com