Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 62415 by mathmax by abdo last updated on 20/Jun/19

calculate f(x,y) =∫_0 ^∞  e^(−xt) ln(yt) dt  with x>0 and y>0 .

$${calculate}\:{f}\left({x},{y}\right)\:=\int_{\mathrm{0}} ^{\infty} \:{e}^{−{xt}} {ln}\left({yt}\right)\:{dt}\:\:{with}\:{x}>\mathrm{0}\:{and}\:{y}>\mathrm{0}\:. \\ $$

Commented bymathmax by abdo last updated on 23/Jun/19

we have f(x,y) =∫_0 ^∞  e^(−xt)  (lny +ln(t)dt =ln(y)∫_0 ^∞  e^(−xt)  dt +∫_0 ^∞  e^(−xt) ln(t)dt  ∫_0 ^∞  e^(−xt)  dt =[−(1/x)e^(−xt) ]_(t=0) ^∞  =(1/x)  ∫_0 ^∞  e^(−xt) ln(t) dt =_(xt =u)   ∫_0 ^∞  e^(−u) ln((u/x))(du/x)  =(1/x){ ∫_0 ^∞  e^(−u)  ln(u)du−ln(x)∫_0 ^∞  e^(−u)  du}  =(1/x){ −γ −ln(x)×1} =−(1/x){ln(x)+γ) ⇒  f(x,y) =((ln(y))/x) −(1/x){ln(x)+γ} =(1/x)( ln((y/x))−γ)  γ is euler constant number.

$${we}\:{have}\:{f}\left({x},{y}\right)\:=\int_{\mathrm{0}} ^{\infty} \:{e}^{−{xt}} \:\left({lny}\:+{ln}\left({t}\right){dt}\:={ln}\left({y}\right)\int_{\mathrm{0}} ^{\infty} \:{e}^{−{xt}} \:{dt}\:+\int_{\mathrm{0}} ^{\infty} \:{e}^{−{xt}} {ln}\left({t}\right){dt}\right. \\ $$ $$\int_{\mathrm{0}} ^{\infty} \:{e}^{−{xt}} \:{dt}\:=\left[−\frac{\mathrm{1}}{{x}}{e}^{−{xt}} \right]_{{t}=\mathrm{0}} ^{\infty} \:=\frac{\mathrm{1}}{{x}} \\ $$ $$\int_{\mathrm{0}} ^{\infty} \:{e}^{−{xt}} {ln}\left({t}\right)\:{dt}\:=_{{xt}\:={u}} \:\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{u}} {ln}\left(\frac{{u}}{{x}}\right)\frac{{du}}{{x}} \\ $$ $$=\frac{\mathrm{1}}{{x}}\left\{\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{u}} \:{ln}\left({u}\right){du}−{ln}\left({x}\right)\int_{\mathrm{0}} ^{\infty} \:{e}^{−{u}} \:{du}\right\} \\ $$ $$=\frac{\mathrm{1}}{{x}}\left\{\:−\gamma\:−{ln}\left({x}\right)×\mathrm{1}\right\}\:=−\frac{\mathrm{1}}{{x}}\left\{{ln}\left({x}\right)+\gamma\right)\:\Rightarrow \\ $$ $${f}\left({x},{y}\right)\:=\frac{{ln}\left({y}\right)}{{x}}\:−\frac{\mathrm{1}}{{x}}\left\{{ln}\left({x}\right)+\gamma\right\}\:=\frac{\mathrm{1}}{{x}}\left(\:{ln}\left(\frac{{y}}{{x}}\right)−\gamma\right) \\ $$ $$\gamma\:{is}\:{euler}\:{constant}\:{number}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com