Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 62340 by Tawa1 last updated on 19/Jun/19

Commented by maxmathsup by imad last updated on 20/Jun/19

3) f(x)+xf(−x) =x ⇒f(−x)−xf(x) =−x   we get the systeme   { ((f(x)+xf(−x) =x)),((xf(x)−f(−x)=x       (with unknown f(x) and f(−x)))) :}  Δ = determinant (((1        x)),((x         −1)))=−1−x^2   f(x) =(Δ_(f(x)) /Δ)       we have Δ_(f(x)) =  determinant (((x        x)),((x       −1)))=−x−x^2  ⇒f(x)=((−x−x^2 )/(−1−x^2 )) =((x^2  +x)/(x^2  +1))  ⇒f(x) =((x^2  +x)/(x^2  +1))

$$\left.\mathrm{3}\right)\:{f}\left({x}\right)+{xf}\left(−{x}\right)\:={x}\:\Rightarrow{f}\left(−{x}\right)−{xf}\left({x}\right)\:=−{x}\:\:\:{we}\:{get}\:{the}\:{systeme} \\ $$$$\begin{cases}{{f}\left({x}\right)+{xf}\left(−{x}\right)\:={x}}\\{{xf}\left({x}\right)−{f}\left(−{x}\right)={x}\:\:\:\:\:\:\:\left({with}\:{unknown}\:{f}\left({x}\right)\:{and}\:{f}\left(−{x}\right)\right)}\end{cases} \\ $$$$\Delta\:=\begin{vmatrix}{\mathrm{1}\:\:\:\:\:\:\:\:{x}}\\{{x}\:\:\:\:\:\:\:\:\:−\mathrm{1}}\end{vmatrix}=−\mathrm{1}−{x}^{\mathrm{2}} \\ $$$${f}\left({x}\right)\:=\frac{\Delta_{{f}\left({x}\right)} }{\Delta}\:\:\:\:\:\:\:{we}\:{have}\:\Delta_{{f}\left({x}\right)} =\:\begin{vmatrix}{{x}\:\:\:\:\:\:\:\:{x}}\\{{x}\:\:\:\:\:\:\:−\mathrm{1}}\end{vmatrix}=−{x}−{x}^{\mathrm{2}} \:\Rightarrow{f}\left({x}\right)=\frac{−{x}−{x}^{\mathrm{2}} }{−\mathrm{1}−{x}^{\mathrm{2}} }\:=\frac{{x}^{\mathrm{2}} \:+{x}}{{x}^{\mathrm{2}} \:+\mathrm{1}} \\ $$$$\Rightarrow{f}\left({x}\right)\:=\frac{{x}^{\mathrm{2}} \:+{x}}{{x}^{\mathrm{2}} \:+\mathrm{1}} \\ $$

Commented by Tawa1 last updated on 20/Jun/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented by prof Abdo imad last updated on 20/Jun/19

you are welcome.

$${you}\:{are}\:{welcome}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com