Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 62204 by maxmathsup by imad last updated on 17/Jun/19

study the convergence of    Σ_(n≥1)  ((ln(1+e^(−n^2 ) ))/n^n )

$${study}\:{the}\:{convergence}\:{of}\:\:\:\:\sum_{{n}\geqslant\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}+{e}^{−{n}^{\mathrm{2}} } \right)}{{n}^{{n}} } \\ $$

Commented by maxmathsup by imad last updated on 19/Jun/19

let U_n =((ln(1+e^(−n^2 ) ))/n^n )   we have ln(1+u) ∼ u   (u∈V(0)) ⇒  ln(1+e^(−n^2 ) ) ∼e^(−n^2  )  ⇒ U_n ∼  (e^(−n^2 ) /n^n )  for all ξ>0 we have  lim_(n→+∞)  n^(1+ξ)  U_n =lim_(n→+∞)  n^(1+ξ  )  (e^(−n^2 ) /n^n )  =lim_(n→+∞)    (e^(−n^2 ) /n^(n−1−ξ) ) =0  ⇒ ∃A>0    ∀ n>n_0       U_n <  (A/n^(1+ξ) )  the seri Σ (A/n^(1+ξ) ) is convergent ⇒ Σ U_n  converges.

$${let}\:{U}_{{n}} =\frac{{ln}\left(\mathrm{1}+{e}^{−{n}^{\mathrm{2}} } \right)}{{n}^{{n}} }\:\:\:{we}\:{have}\:{ln}\left(\mathrm{1}+{u}\right)\:\sim\:{u}\:\:\:\left({u}\in{V}\left(\mathrm{0}\right)\right)\:\Rightarrow \\ $$$${ln}\left(\mathrm{1}+{e}^{−{n}^{\mathrm{2}} } \right)\:\sim{e}^{−{n}^{\mathrm{2}} \:} \:\Rightarrow\:{U}_{{n}} \sim\:\:\frac{{e}^{−{n}^{\mathrm{2}} } }{{n}^{{n}} } \\ $$$${for}\:{all}\:\xi>\mathrm{0}\:{we}\:{have}\:\:{lim}_{{n}\rightarrow+\infty} \:{n}^{\mathrm{1}+\xi} \:{U}_{{n}} ={lim}_{{n}\rightarrow+\infty} \:{n}^{\mathrm{1}+\xi\:\:} \:\frac{{e}^{−{n}^{\mathrm{2}} } }{{n}^{{n}} } \\ $$$$={lim}_{{n}\rightarrow+\infty} \:\:\:\frac{{e}^{−{n}^{\mathrm{2}} } }{{n}^{{n}−\mathrm{1}−\xi} }\:=\mathrm{0}\:\:\Rightarrow\:\exists{A}>\mathrm{0}\:\:\:\:\forall\:{n}>{n}_{\mathrm{0}} \:\:\:\:\:\:{U}_{{n}} <\:\:\frac{{A}}{{n}^{\mathrm{1}+\xi} } \\ $$$${the}\:{seri}\:\Sigma\:\frac{{A}}{{n}^{\mathrm{1}+\xi} }\:{is}\:{convergent}\:\Rightarrow\:\Sigma\:{U}_{{n}} \:{converges}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com