Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 62201 by maxmathsup by imad last updated on 17/Jun/19

calculate ∫∫_W   e^(x−2y) sin(x+2y) dxdy  W ={(x,y)^2 /  0≤x≤1  and  2≤y≤(√5)}

$${calculate}\:\int\int_{{W}} \:\:{e}^{{x}−\mathrm{2}{y}} {sin}\left({x}+\mathrm{2}{y}\right)\:{dxdy} \\ $$$${W}\:=\left\{\left({x},{y}\right)^{\mathrm{2}} /\:\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\:\:{and}\:\:\mathrm{2}\leqslant{y}\leqslant\sqrt{\mathrm{5}}\right\} \\ $$

Commented by mathmax by abdo last updated on 04/Jul/19

let use the diffeomorphism (u,v)→ϕ(u,v)=(x,y) /x−2y =u and x+2y =v ⇒  x =((u+v)/2) and  y =((−u+v)/4) ⇒ϕ_1 (u,v)=((u+v)/2) and ϕ_2 (u,v)=((−u+v)/4)   we have  0≤x≤1 and  −2(√5)≤−2y≤−4 ⇒−2(√5)≤x−2y≤−3 ⇒−2(√5)≤u≤−3  4≤2y≤2(√5) ⇒ 4≤x+2y≤ 1+2(√5) ⇒ 4≤v≤1+2(√5)  ∫∫_W    f(x,ydxdy =∫∫_w foϕ(u,v)∣j_ϕ ∣ du dv  M_j (ϕ) = ((((∂ϕ_1 /∂u)              (∂ϕ_1 /∂v))),(((∂ϕ_2 /∂u)                  (∂ϕ_2 /∂v))) )      =  ((((1/2)              (1/2))),((−(1/4)           (1/4))) )  det Mj(ϕ) =(2/8) =(1/4)⇒  I =∫∫_(−2(√5)≤u≤−3 and  4≤v≤1+2(√5))      e^u sin(v) (1/4) du dv  =(1/4) ∫_(−2(√5)) ^(−3)  e^u du . ∫_4 ^(1+2(√5))    sin(v)dv  =(1/4)( e^(−3)  −e^(−2(√5)) )(  cos(4)−cos(1+2(√5))) .

$${let}\:{use}\:{the}\:{diffeomorphism}\:\left({u},{v}\right)\rightarrow\varphi\left({u},{v}\right)=\left({x},{y}\right)\:/{x}−\mathrm{2}{y}\:={u}\:{and}\:{x}+\mathrm{2}{y}\:={v}\:\Rightarrow \\ $$$${x}\:=\frac{{u}+{v}}{\mathrm{2}}\:{and}\:\:{y}\:=\frac{−{u}+{v}}{\mathrm{4}}\:\Rightarrow\varphi_{\mathrm{1}} \left({u},{v}\right)=\frac{{u}+{v}}{\mathrm{2}}\:{and}\:\varphi_{\mathrm{2}} \left({u},{v}\right)=\frac{−{u}+{v}}{\mathrm{4}} \\ $$$$\:{we}\:{have}\:\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\:{and}\:\:−\mathrm{2}\sqrt{\mathrm{5}}\leqslant−\mathrm{2}{y}\leqslant−\mathrm{4}\:\Rightarrow−\mathrm{2}\sqrt{\mathrm{5}}\leqslant{x}−\mathrm{2}{y}\leqslant−\mathrm{3}\:\Rightarrow−\mathrm{2}\sqrt{\mathrm{5}}\leqslant{u}\leqslant−\mathrm{3} \\ $$$$\mathrm{4}\leqslant\mathrm{2}{y}\leqslant\mathrm{2}\sqrt{\mathrm{5}}\:\Rightarrow\:\mathrm{4}\leqslant{x}+\mathrm{2}{y}\leqslant\:\mathrm{1}+\mathrm{2}\sqrt{\mathrm{5}}\:\Rightarrow\:\mathrm{4}\leqslant{v}\leqslant\mathrm{1}+\mathrm{2}\sqrt{\mathrm{5}} \\ $$$$\int\int_{{W}} \:\:\:{f}\left({x},{ydxdy}\:=\int\int_{{w}} {fo}\varphi\left({u},{v}\right)\mid{j}_{\varphi} \mid\:{du}\:{dv}\right. \\ $$$${M}_{{j}} \left(\varphi\right)\:=\begin{pmatrix}{\frac{\partial\varphi_{\mathrm{1}} }{\partial{u}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\partial\varphi_{\mathrm{1}} }{\partial{v}}}\\{\frac{\partial\varphi_{\mathrm{2}} }{\partial{u}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\partial\varphi_{\mathrm{2}} }{\partial{v}}}\end{pmatrix}\:\:\:\:\:\:=\:\begin{pmatrix}{\frac{\mathrm{1}}{\mathrm{2}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{2}}}\\{−\frac{\mathrm{1}}{\mathrm{4}}\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{4}}}\end{pmatrix} \\ $$$${det}\:{Mj}\left(\varphi\right)\:=\frac{\mathrm{2}}{\mathrm{8}}\:=\frac{\mathrm{1}}{\mathrm{4}}\Rightarrow \\ $$$${I}\:=\int\int_{−\mathrm{2}\sqrt{\mathrm{5}}\leqslant{u}\leqslant−\mathrm{3}\:{and}\:\:\mathrm{4}\leqslant{v}\leqslant\mathrm{1}+\mathrm{2}\sqrt{\mathrm{5}}} \:\:\:\:\:{e}^{{u}} {sin}\left({v}\right)\:\frac{\mathrm{1}}{\mathrm{4}}\:{du}\:{dv} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\:\int_{−\mathrm{2}\sqrt{\mathrm{5}}} ^{−\mathrm{3}} \:{e}^{{u}} {du}\:.\:\int_{\mathrm{4}} ^{\mathrm{1}+\mathrm{2}\sqrt{\mathrm{5}}} \:\:\:{sin}\left({v}\right){dv} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\left(\:{e}^{−\mathrm{3}} \:−{e}^{−\mathrm{2}\sqrt{\mathrm{5}}} \right)\left(\:\:{cos}\left(\mathrm{4}\right)−{cos}\left(\mathrm{1}+\mathrm{2}\sqrt{\mathrm{5}}\right)\right)\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com