Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 5851 by sanusihammed last updated on 01/Jun/16

Solve simultaneously    2x + y − z = 8    ......... (i)  x^2  − y^2  + 2z^2  = 14    ......... (ii)  3x^3  + 4y^3  + z^3  = 195    ........... (iii)    Please help. Thanks.

$${Solve}\:{simultaneously} \\ $$$$ \\ $$$$\mathrm{2}{x}\:+\:{y}\:−\:{z}\:=\:\mathrm{8}\:\:\:\:.........\:\left({i}\right) \\ $$$${x}^{\mathrm{2}} \:−\:{y}^{\mathrm{2}} \:+\:\mathrm{2}{z}^{\mathrm{2}} \:=\:\mathrm{14}\:\:\:\:.........\:\left({ii}\right) \\ $$$$\mathrm{3}{x}^{\mathrm{3}} \:+\:\mathrm{4}{y}^{\mathrm{3}} \:+\:{z}^{\mathrm{3}} \:=\:\mathrm{195}\:\:\:\:...........\:\left({iii}\right) \\ $$$$ \\ $$$${Please}\:{help}.\:{Thanks}. \\ $$

Commented by Yozzii last updated on 01/Jun/16

Suppose x,z,y∈Z. Then 2x is even.  Also 2∣8⇒ in (i) 2∣(y−z)  ⇒y and z share the same parity (even or odd)  To see this, let y=2n,z=2m (m,n∈Z).⇒y−z=2(n−m) which is even.  Now let y=2p+1,z=2k−1 (p,k∈Z).⇒y−z=2(p−k+1) which is even.  −−−−−−−−−−−−−−−−−−−−−−−−−−  Suppose in one case that y and z are  odd. Then, 2z^2  is even and y^2  is odd.  But x∈Z and from (ii) 14 is even.   So, 2∤x^2  or x is odd  From (iii), 195 is odd, z^3  is odd, 4y^3   is even and 3x^3  is odd   ⇒(odd integer)+(even integer)+(odd integer)=(odd integer)  which is a contradiction.  So, y and z cannot both be odd integers.  −−−−−−−−−−−−−−−−−−−−−−−−−−  Suppose now that both z and y are even.  ⇒ in (ii), 2∣y^2  and also 2∣2z^2 . But 2∣14  and if 2∤x⇒ (odd)−(even)+(even)=(even)  which is a contradiction. Hence, x must be even.  Looking at (iii), since 2∣x,y,z but 2∤195  (iii) is also contradictory.  −−−−−−−−−−−−−−−−−−−−−−−−−−  In all, no integer triple (x,y,z)∈Z^3  exists  satisfying equations (i)→(iii) concurrently.

$${Suppose}\:{x},{z},{y}\in\mathbb{Z}.\:{Then}\:\mathrm{2}{x}\:{is}\:{even}. \\ $$$${Also}\:\mathrm{2}\mid\mathrm{8}\Rightarrow\:{in}\:\left({i}\right)\:\mathrm{2}\mid\left({y}−{z}\right) \\ $$$$\Rightarrow{y}\:{and}\:{z}\:{share}\:{the}\:{same}\:{parity}\:\left({even}\:{or}\:{odd}\right) \\ $$$${To}\:{see}\:{this},\:{let}\:{y}=\mathrm{2}{n},{z}=\mathrm{2}{m}\:\left({m},{n}\in\mathbb{Z}\right).\Rightarrow{y}−{z}=\mathrm{2}\left({n}−{m}\right)\:{which}\:{is}\:{even}. \\ $$$${Now}\:{let}\:{y}=\mathrm{2}{p}+\mathrm{1},{z}=\mathrm{2}{k}−\mathrm{1}\:\left({p},{k}\in\mathbb{Z}\right).\Rightarrow{y}−{z}=\mathrm{2}\left({p}−{k}+\mathrm{1}\right)\:{which}\:{is}\:{even}. \\ $$$$−−−−−−−−−−−−−−−−−−−−−−−−−− \\ $$$${Suppose}\:{in}\:{one}\:{case}\:{that}\:{y}\:{and}\:{z}\:{are} \\ $$$${odd}.\:{Then},\:\mathrm{2}{z}^{\mathrm{2}} \:{is}\:{even}\:{and}\:{y}^{\mathrm{2}} \:{is}\:{odd}. \\ $$$${But}\:{x}\in\mathbb{Z}\:{and}\:{from}\:\left({ii}\right)\:\mathrm{14}\:{is}\:{even}.\: \\ $$$${So},\:\mathrm{2}\nmid{x}^{\mathrm{2}} \:{or}\:{x}\:{is}\:{odd} \\ $$$${From}\:\left({iii}\right),\:\mathrm{195}\:{is}\:{odd},\:{z}^{\mathrm{3}} \:{is}\:{odd},\:\mathrm{4}{y}^{\mathrm{3}} \\ $$$${is}\:{even}\:{and}\:\mathrm{3}{x}^{\mathrm{3}} \:{is}\:{odd}\: \\ $$$$\Rightarrow\left({odd}\:{integer}\right)+\left({even}\:{integer}\right)+\left({odd}\:{integer}\right)=\left({odd}\:{integer}\right) \\ $$$${which}\:{is}\:{a}\:{contradiction}. \\ $$$${So},\:{y}\:{and}\:{z}\:{cannot}\:{both}\:{be}\:{odd}\:{integers}. \\ $$$$−−−−−−−−−−−−−−−−−−−−−−−−−− \\ $$$${Suppose}\:{now}\:{that}\:{both}\:{z}\:{and}\:{y}\:{are}\:{even}. \\ $$$$\Rightarrow\:{in}\:\left({ii}\right),\:\mathrm{2}\mid{y}^{\mathrm{2}} \:{and}\:{also}\:\mathrm{2}\mid\mathrm{2}{z}^{\mathrm{2}} .\:{But}\:\mathrm{2}\mid\mathrm{14} \\ $$$${and}\:{if}\:\mathrm{2}\nmid{x}\Rightarrow\:\left({odd}\right)−\left({even}\right)+\left({even}\right)=\left({even}\right) \\ $$$${which}\:{is}\:{a}\:{contradiction}.\:{Hence},\:{x}\:{must}\:{be}\:{even}. \\ $$$${Looking}\:{at}\:\left({iii}\right),\:{since}\:\mathrm{2}\mid{x},{y},{z}\:{but}\:\mathrm{2}\nmid\mathrm{195} \\ $$$$\left({iii}\right)\:{is}\:{also}\:{contradictory}. \\ $$$$−−−−−−−−−−−−−−−−−−−−−−−−−− \\ $$$${In}\:{all},\:{no}\:{integer}\:{triple}\:\left({x},{y},{z}\right)\in\mathbb{Z}^{\mathrm{3}} \:{exists} \\ $$$${satisfying}\:{equations}\:\left({i}\right)\rightarrow\left({iii}\right)\:{concurrently}. \\ $$

Commented by sanusihammed last updated on 01/Jun/16

Thanks . i grab=

$${Thanks}\:.\:{i}\:{grab}= \\ $$

Commented by Rasheed Soomro last updated on 09/Jun/16

G^(OO) D A^(NALYSI) S !

$$\mathrm{G}^{\mathcal{OO}} \mathrm{D}\:\mathrm{A}^{\mathcal{NALYSI}} \mathrm{S}\:! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com