Question and Answers Forum

All Questions      Topic List

Heat and Theromdynamics Questions

Previous in All Question      Next in All Question      

Previous in Heat and Theromdynamics      Next in Heat and Theromdynamics      

Question Number 58196 by Umar last updated on 19/Apr/19

The molar heat capacity of constant  presure of a gas varies with the temperature  according to the equation            C_p  =  a + bθ −(C/θ^2 )  where a,b and C are constants.    How much heat is transfered during     an isobaric process in which n mole     of gas undergo a temperature rise      from θ_(i ) to θ_f  ?

$$\mathrm{The}\:\mathrm{molar}\:\mathrm{heat}\:\mathrm{capacity}\:\mathrm{of}\:\mathrm{constant} \\ $$$$\mathrm{presure}\:\mathrm{of}\:\mathrm{a}\:\mathrm{gas}\:\mathrm{varies}\:\mathrm{with}\:\mathrm{the}\:\mathrm{temperature} \\ $$$$\mathrm{according}\:\mathrm{to}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{C}_{\mathrm{p}} \:=\:\:\mathrm{a}\:+\:\mathrm{b}\theta\:−\frac{\mathrm{C}}{\theta^{\mathrm{2}} } \\ $$$$\mathrm{where}\:\mathrm{a},\mathrm{b}\:\mathrm{and}\:\mathrm{C}\:\mathrm{are}\:\mathrm{constants}. \\ $$$$\:\:\mathrm{How}\:\mathrm{much}\:\mathrm{heat}\:\mathrm{is}\:\mathrm{transfered}\:\mathrm{during} \\ $$$$\:\:\:\mathrm{an}\:\mathrm{isobaric}\:\mathrm{process}\:\mathrm{in}\:\mathrm{which}\:\mathrm{n}\:\mathrm{mole} \\ $$$$\:\:\:\mathrm{of}\:\mathrm{gas}\:\mathrm{undergo}\:\mathrm{a}\:\mathrm{temperature}\:\mathrm{rise} \\ $$$$\:\:\:\:\mathrm{from}\:\theta_{{i}\:} \mathrm{to}\:\theta_{{f}} \:? \\ $$

Answered by tanmay last updated on 19/Apr/19

dQ=nC_p dθ  dQ=n(a+bθ−(C/θ^2 ))dθ  Q=na∫_θ_i  ^θ_f  dθ+nb∫_θ_i  ^θ_f  θdθ−nC∫_θ_i  ^θ_f  θ^(−2) dθ  =na∣θ∣_θ_i  ^θ_f  +nb∣(θ^2 /2)−∣_θ_i  ^θ_f  −nC∣(θ^(−1) /(−1))∣^θ_f  θ_i   =na(θ_f −θ_i )+((nb)/2)(θ_f ^2 −θ_i ^2 )+nC((1/θ_f )−(1/θ_i ))  plz check...

$${dQ}={nC}_{{p}} {d}\theta \\ $$$${dQ}={n}\left({a}+{b}\theta−\frac{{C}}{\theta^{\mathrm{2}} }\right){d}\theta \\ $$$${Q}={na}\int_{\theta_{{i}} } ^{\theta_{{f}} } {d}\theta+{nb}\int_{\theta_{{i}} } ^{\theta_{{f}} } \theta{d}\theta−{nC}\int_{\theta_{{i}} } ^{\theta_{{f}} } \theta^{−\mathrm{2}} {d}\theta \\ $$$$={na}\mid\theta\mid_{\theta_{{i}} } ^{\theta_{{f}} } +{nb}\mid\frac{\theta^{\mathrm{2}} }{\mathrm{2}}−\mid_{\theta_{{i}} } ^{\theta_{{f}} } −{nC}\mid\frac{\theta^{−\mathrm{1}} }{−\mathrm{1}}\mid^{\theta_{{f}} } \theta_{{i}} \\ $$$$={na}\left(\theta_{{f}} −\theta_{{i}} \right)+\frac{{nb}}{\mathrm{2}}\left(\theta_{{f}} ^{\mathrm{2}} −\theta_{{i}} ^{\mathrm{2}} \right)+{nC}\left(\frac{\mathrm{1}}{\theta_{{f}} }−\frac{\mathrm{1}}{\theta_{{i}} }\right) \\ $$$${plz}\:{check}... \\ $$$$ \\ $$

Commented by Umar last updated on 19/Apr/19

thanks a bunch

$$\mathrm{thanks}\:\mathrm{a}\:\mathrm{bunch} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com