Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 58067 by mustakim420 last updated on 17/Apr/19

Commented by maxmathsup by imad last updated on 17/Apr/19

let A(x) =x^((1+(1/x))^x −e)    ⇒A(x) = e^({(1+(1/x))^x −e}ln(x))   ⇒ln(A(x))={(1+(1/x))^x −e)}ln(x)  but  (1+(1/x))^x −e=e^(xln(1+(1/x))) −e =_(x=(1/t))     e^((1/t)ln(1+t))  −e  x→∞ ⇒t→0^+    we have ln(1+t)}^((1)) =(1/(1+t)) =1−t +o(t^2 ) ⇒  ln(1+t) =t−(t^2 /2) +o(t^3 ) ⇒((ln(1+t))/t) =1−(t/2) +o(t^2 ) ⇒e^((ln(1+t))/t)  =e^(1−(t/2) +o(t^2 ))    =e (1−(t/2) +o(t^2 )) ⇒(1+(1/x))^x  −e =−(e/(2x)) +o((1/x^2 )) ⇒ln(A(x))  =(−(e/(2x)) +o((1/x^2 ))}ln(x)  ⇒lim_(x→+∞)  ln(A(x)) =0 ⇒lim_(x→∞)   A(x) =1 .

$$\left.{let}\:{A}\left({x}\right)\:={x}^{\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)^{{x}} −{e}} \:\:\:\Rightarrow{A}\left({x}\right)\:=\:{e}^{\left\{\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)^{{x}} −{e}\right\}{ln}\left({x}\right)} \:\:\Rightarrow{ln}\left({A}\left({x}\right)\right)=\left\{\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)^{{x}} −{e}\right)\right\}{ln}\left({x}\right) \\ $$$${but}\:\:\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)^{{x}} −{e}={e}^{{xln}\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)} −{e}\:=_{{x}=\frac{\mathrm{1}}{{t}}} \:\:\:\:{e}^{\frac{\mathrm{1}}{{t}}{ln}\left(\mathrm{1}+{t}\right)} \:−{e} \\ $$$$\left.{x}\rightarrow\infty\:\Rightarrow{t}\rightarrow\mathrm{0}^{+} \:\:\:{we}\:{have}\:{ln}\left(\mathrm{1}+{t}\right)\right\}^{\left(\mathrm{1}\right)} =\frac{\mathrm{1}}{\mathrm{1}+{t}}\:=\mathrm{1}−{t}\:+{o}\left({t}^{\mathrm{2}} \right)\:\Rightarrow \\ $$$${ln}\left(\mathrm{1}+{t}\right)\:={t}−\frac{{t}^{\mathrm{2}} }{\mathrm{2}}\:+{o}\left({t}^{\mathrm{3}} \right)\:\Rightarrow\frac{{ln}\left(\mathrm{1}+{t}\right)}{{t}}\:=\mathrm{1}−\frac{{t}}{\mathrm{2}}\:+{o}\left({t}^{\mathrm{2}} \right)\:\Rightarrow{e}^{\frac{{ln}\left(\mathrm{1}+{t}\right)}{{t}}} \:={e}^{\mathrm{1}−\frac{{t}}{\mathrm{2}}\:+{o}\left({t}^{\mathrm{2}} \right)} \: \\ $$$$={e}\:\left(\mathrm{1}−\frac{{t}}{\mathrm{2}}\:+{o}\left({t}^{\mathrm{2}} \right)\right)\:\Rightarrow\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)^{{x}} \:−{e}\:=−\frac{{e}}{\mathrm{2}{x}}\:+{o}\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)\:\Rightarrow{ln}\left({A}\left({x}\right)\right) \\ $$$$=\left(−\frac{{e}}{\mathrm{2}{x}}\:+{o}\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)\right\}{ln}\left({x}\right)\:\:\Rightarrow{lim}_{{x}\rightarrow+\infty} \:{ln}\left({A}\left({x}\right)\right)\:=\mathrm{0}\:\Rightarrow{lim}_{{x}\rightarrow\infty} \:\:{A}\left({x}\right)\:=\mathrm{1}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com