Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 57416 by Abdo msup. last updated on 03/Apr/19

let f(x)=∫_(2x) ^(4x)     (dt/(t^2 −2t +3))  1)find f(x)  2) calculate lim_(x→0) f(x) and lim_(x→+∞) f(x)

$${let}\:{f}\left({x}\right)=\int_{\mathrm{2}{x}} ^{\mathrm{4}{x}} \:\:\:\:\frac{{dt}}{{t}^{\mathrm{2}} −\mathrm{2}{t}\:+\mathrm{3}} \\ $$$$\left.\mathrm{1}\right){find}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} {f}\left({x}\right)\:{and}\:{lim}_{{x}\rightarrow+\infty} {f}\left({x}\right) \\ $$

Commented by maxmathsup by imad last updated on 04/Apr/19

1)we have f(x)=∫_(2x) ^(4x)   (dt/(t^2 −2t+1+2)) =∫_(2x) ^(4x)   (dt/((t−1)^2  +2)) =_(t−1=(√2)u)   ∫_((2x−1)/(√2)) ^((4x−1)/(√2))    (((√2)du)/(2(1+u^2 )))  =(1/(√2)) [arctanu]_((2x−1)/(√2)) ^((4x−1)/(√2))      =(1/(√2)){arctan(((4x−1)/(√2)))−arctan(((2x−1)/(√2)))}  2) we have lim_(x→0) f(x)=(1/(√2)){ −arctan((1/(√2))) +arctan((1/(√2)))}=0  also  lim_(x→+∞) f(x) =(1/(√2)){(π/2) −(π/2)} =0 .

$$\left.\mathrm{1}\right){we}\:{have}\:{f}\left({x}\right)=\int_{\mathrm{2}{x}} ^{\mathrm{4}{x}} \:\:\frac{{dt}}{{t}^{\mathrm{2}} −\mathrm{2}{t}+\mathrm{1}+\mathrm{2}}\:=\int_{\mathrm{2}{x}} ^{\mathrm{4}{x}} \:\:\frac{{dt}}{\left({t}−\mathrm{1}\right)^{\mathrm{2}} \:+\mathrm{2}}\:=_{{t}−\mathrm{1}=\sqrt{\mathrm{2}}{u}} \:\:\int_{\frac{\mathrm{2}{x}−\mathrm{1}}{\sqrt{\mathrm{2}}}} ^{\frac{\mathrm{4}{x}−\mathrm{1}}{\sqrt{\mathrm{2}}}} \:\:\:\frac{\sqrt{\mathrm{2}}{du}}{\mathrm{2}\left(\mathrm{1}+{u}^{\mathrm{2}} \right)} \\ $$$$=\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\:\left[{arctanu}\right]_{\frac{\mathrm{2}{x}−\mathrm{1}}{\sqrt{\mathrm{2}}}} ^{\frac{\mathrm{4}{x}−\mathrm{1}}{\sqrt{\mathrm{2}}}} \:\:\:\:\:=\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\left\{{arctan}\left(\frac{\mathrm{4}{x}−\mathrm{1}}{\sqrt{\mathrm{2}}}\right)−{arctan}\left(\frac{\mathrm{2}{x}−\mathrm{1}}{\sqrt{\mathrm{2}}}\right)\right\} \\ $$$$\left.\mathrm{2}\right)\:{we}\:{have}\:{lim}_{{x}\rightarrow\mathrm{0}} {f}\left({x}\right)=\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\left\{\:−{arctan}\left(\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\right)\:+{arctan}\left(\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\right)\right\}=\mathrm{0}\:\:{also} \\ $$$${lim}_{{x}\rightarrow+\infty} {f}\left({x}\right)\:=\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\left\{\frac{\pi}{\mathrm{2}}\:−\frac{\pi}{\mathrm{2}}\right\}\:=\mathrm{0}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com