Question Number 57357 by ANTARES VY last updated on 03/Apr/19 | ||
$$\mathrm{1}−\mathrm{2}\boldsymbol{\mathrm{sin}}\left(\mathrm{4}\boldsymbol{\mathrm{x}}\right)<\boldsymbol{\mathrm{cos}}^{\mathrm{2}} \left(\mathrm{4}\boldsymbol{\mathrm{x}}\right) \\ $$ $$\boldsymbol{\mathrm{solve}}. \\ $$ | ||
Commented bybshahid010@gmail.com last updated on 03/Apr/19 | ||
$$\mathrm{1}−\mathrm{2sin}\left(\mathrm{4x}\right)<\mathrm{cos}^{\mathrm{2}} \left(\mathrm{4x}\right) \\ $$ $$\mathrm{1}−\mathrm{2sin}\left(\mathrm{4x}\right)−\mathrm{cos}^{\mathrm{2}} \left(\mathrm{4x}\right)<\mathrm{0} \\ $$ $$\mathrm{1}−\mathrm{2sin}\left(\mathrm{4x}\right)−\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \left(\mathrm{4x}\right)<\mathrm{0} \\ $$ $$\mathrm{sin}^{\mathrm{2}} \mathrm{4x}−\mathrm{2sin4x}<\mathrm{0} \\ $$ $$\mathrm{sin4x}\left(\mathrm{sin4x}−\mathrm{2}\right)<\mathrm{0} \\ $$ $$\mathrm{sin4x}\in\left(\mathrm{0},\mathrm{2}\right)\:\mathrm{so}\:\mathrm{sin4x}\in\left(\mathrm{0},\mathrm{1}\right) \\ $$ $$\mathrm{x}\in\left(\mathrm{0},\mathrm{sin1}\right) \\ $$ $$ \\ $$ | ||
Commented bytanmay.chaudhury50@gmail.com last updated on 03/Apr/19 | ||
$${max}\:{value}\:{of}\:{sin}\theta=\mathrm{1}\: \\ $$ $${so}\:{i}\:{think}\:\:\:\:{sin}\mathrm{4}{x}\in\left(\mathrm{0},\mathrm{1}\right)\:{but}\: \\ $$ $${sin}\mathrm{4}{x}\notin\left(\mathrm{0},\mathrm{2}\right)\: \\ $$ $${let}\:{other}\:{comment}... \\ $$ | ||
Answered by tanmay.chaudhury50@gmail.com last updated on 03/Apr/19 | ||
$${sin}\mathrm{4}{x}={a} \\ $$ $$\mathrm{1}−\mathrm{2}{a}<\mathrm{1}−{a}^{\mathrm{2}} \\ $$ $${a}^{\mathrm{2}} −\mathrm{2}{a}<\mathrm{0} \\ $$ $${a}\left({a}−\mathrm{2}\right)<\mathrm{0} \\ $$ $${a}\neq\mathrm{2}\:\:\:\:\:\:\:{a}_{{max}} =\mathrm{1} \\ $$ $$\mathrm{1}>{a}>\mathrm{0}\:{is}\:{the}\:{reauired}\:{solution}\: \\ $$ $$\mathrm{1}>{sin}\mathrm{4}{x}>\mathrm{0} \\ $$ $${sin}\frac{\pi}{\mathrm{2}}>{sin}\mathrm{4}{x}>{sin}\mathrm{0} \\ $$ $$\frac{\pi}{\mathrm{8}}>{x}>\mathrm{0} \\ $$ $$ \\ $$ | ||
Commented byANTARES VY last updated on 03/Apr/19 | ||
$$??? \\ $$ | ||
Answered by einsteindrmaths@hotmail.fr last updated on 03/Apr/19 | ||
$${c}\mathrm{os}\:^{\mathrm{2}} \left(\mathrm{4}{x}\right)=\mathrm{1}−{sin}^{\mathrm{2}} \left(\mathrm{4}{x}\right)====>\mathrm{1}−\mathrm{sin}\left(\mathrm{4}{x}\right)<\mathrm{1}−{sin}^{\mathrm{2}} \left(\mathrm{4}{x}\right) \\ $$ $$==>{sin}^{\mathrm{2}} \left(\mathrm{4}{x}\right)−{sin}\left(\mathrm{4}{x}\right)<\mathrm{0}==>{sin}\left(\mathrm{4}{x}\right)\left(\mathrm{1}−{sin}\left(\mathrm{4}{x}\right)\right)<\mathrm{0}==> \\ $$ $$\left.{sin}\left(\mathrm{4}{x}\right)>\mathrm{0\&1}−{sin}\left(\mathrm{4}{x}\right)\neq\mathrm{0}===>{x}\neq\left\{\frac{\pi}{\mathrm{8}}+\frac{{k}\pi}{\mathrm{2}}/{k}\in{IZ}\right\}\cup\right]\frac{{k}\pi}{\mathrm{2}\:};\frac{\left(\mathrm{2}{k}+\mathrm{1}\right)\pi}{\mathrm{4}}\left[\right. \\ $$ | ||
Answered by mr W last updated on 03/Apr/19 | ||
$$\mathrm{1}−\mathrm{2}\:\mathrm{sin}\:\left(\mathrm{4}{x}\right)<\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \:\left(\mathrm{4}{x}\right) \\ $$ $$\mathrm{sin}\:\left(\mathrm{4}{x}\right)\left\{\mathrm{sin}\:\left(\mathrm{4}{x}\right)−\mathrm{2}\right\}<\mathrm{0} \\ $$ $${since}\:\mathrm{sin}\:\left(\mathrm{4}{x}\right)−\mathrm{2}<\mathrm{0} \\ $$ $$\Rightarrow\mathrm{sin}\:\left(\mathrm{4}{x}\right)>\mathrm{0} \\ $$ $${or} \\ $$ $$\Rightarrow\mathrm{0}<\mathrm{sin}\:\left(\mathrm{4}{x}\right)\leqslant\mathrm{1} \\ $$ $$\Rightarrow\mathrm{4}{x}\in\left(\mathrm{2}{n}\pi,\mathrm{2}{n}\pi+\pi\right) \\ $$ $$\Rightarrow{x}\in\left(\frac{{n}\pi}{\mathrm{2}},\frac{{n}\pi}{\mathrm{2}}+\frac{\pi}{\mathrm{4}}\right)\:{with}\:{n}\in\mathbb{W} \\ $$ | ||