Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 57012 by rahul 19 last updated on 28/Mar/19

Find the local minimum value of f(x)  where f(x)= (x−(1/x))+((2/(x−(1/x)))) ?

$${Find}\:{the}\:{local}\:{minimum}\:{value}\:{of}\:{f}\left({x}\right) \\ $$$${where}\:{f}\left({x}\right)=\:\left({x}−\frac{\mathrm{1}}{{x}}\right)+\left(\frac{\mathrm{2}}{{x}−\frac{\mathrm{1}}{{x}}}\right)\:? \\ $$

Answered by mr W last updated on 29/Mar/19

let t=x−(1/x)  if t>0:  f(x)=t+(2/t)≥2(√(t×(2/t)))=2(√2)=local min  if t<0:  f(x)=t+(2/t)=−(−t+(2/(−t)))≤−2(√((−t)×(2/((−t)))))=−2(√2)=local max

$${let}\:{t}={x}−\frac{\mathrm{1}}{{x}} \\ $$$${if}\:{t}>\mathrm{0}: \\ $$$${f}\left({x}\right)={t}+\frac{\mathrm{2}}{{t}}\geqslant\mathrm{2}\sqrt{{t}×\frac{\mathrm{2}}{{t}}}=\mathrm{2}\sqrt{\mathrm{2}}={local}\:{min} \\ $$$${if}\:{t}<\mathrm{0}: \\ $$$${f}\left({x}\right)={t}+\frac{\mathrm{2}}{{t}}=−\left(−{t}+\frac{\mathrm{2}}{−{t}}\right)\leqslant−\mathrm{2}\sqrt{\left(−{t}\right)×\frac{\mathrm{2}}{\left(−{t}\right)}}=−\mathrm{2}\sqrt{\mathrm{2}}={local}\:{max} \\ $$

Commented by rahul 19 last updated on 30/Mar/19

thank you sir!

Commented by rahul 19 last updated on 30/Mar/19

Sir, how to do the same problem if   f(x)= (x+(1/x))+((2/(x+(1/x)))) .

$${Sir},\:{how}\:{to}\:{do}\:{the}\:{same}\:{problem}\:{if}\: \\ $$$${f}\left({x}\right)=\:\left({x}+\frac{\mathrm{1}}{{x}}\right)+\left(\frac{\mathrm{2}}{{x}+\frac{\mathrm{1}}{{x}}}\right)\:. \\ $$

Commented by mr W last updated on 31/Mar/19

let t=x+(1/x)  for x>0: t≥2  for x<0: t≤−2    f(t)=t+(2/t)  f′(t)=1−(2/t^2 )>0⇒f(t) is strictly increasing    if t≥2, i.e. x>0:  sincs f(t) is strictly increasing  ⇒min. =f(t=2)=3     if t≤−2, i.e. x<0:  sincs f(t) is strictly increasing  ⇒max. =f(t=−2)=−3

$${let}\:{t}={x}+\frac{\mathrm{1}}{{x}} \\ $$$${for}\:{x}>\mathrm{0}:\:{t}\geqslant\mathrm{2} \\ $$$${for}\:{x}<\mathrm{0}:\:{t}\leqslant−\mathrm{2} \\ $$$$ \\ $$$${f}\left({t}\right)={t}+\frac{\mathrm{2}}{{t}} \\ $$$${f}'\left({t}\right)=\mathrm{1}−\frac{\mathrm{2}}{{t}^{\mathrm{2}} }>\mathrm{0}\Rightarrow{f}\left({t}\right)\:{is}\:{strictly}\:{increasing} \\ $$$$ \\ $$$${if}\:{t}\geqslant\mathrm{2},\:{i}.{e}.\:{x}>\mathrm{0}: \\ $$$${sincs}\:{f}\left({t}\right)\:{is}\:{strictly}\:{increasing} \\ $$$$\Rightarrow{min}.\:={f}\left({t}=\mathrm{2}\right)=\mathrm{3}\: \\ $$$$ \\ $$$${if}\:{t}\leqslant−\mathrm{2},\:{i}.{e}.\:{x}<\mathrm{0}: \\ $$$${sincs}\:{f}\left({t}\right)\:{is}\:{strictly}\:{increasing} \\ $$$$\Rightarrow{max}.\:={f}\left({t}=−\mathrm{2}\right)=−\mathrm{3}\: \\ $$

Commented by rahul 19 last updated on 31/Mar/19

Sir ,in this case we cannot apply  A.M≥G.M because t≥2 for x>0  unlike the above Q. where local minimum  occured at t=(√2) ?

$${Sir}\:,{in}\:{this}\:{case}\:{we}\:{cannot}\:{apply} \\ $$$${A}.{M}\geqslant{G}.{M}\:{because}\:{t}\geqslant\mathrm{2}\:{for}\:{x}>\mathrm{0} \\ $$$${unlike}\:{the}\:{above}\:{Q}.\:{where}\:{local}\:{minimum} \\ $$$${occured}\:{at}\:{t}=\sqrt{\mathrm{2}}\:? \\ $$

Commented by mr W last updated on 31/Mar/19

that′s the reason,  you are absolutely correct!

$${that}'{s}\:{the}\:{reason}, \\ $$$${you}\:{are}\:{absolutely}\:{correct}! \\ $$

Answered by MJS last updated on 28/Mar/19

f(x)=((x^4 +1)/(x(x^2 −1)))  f′(x)=((x^6 −3x^4 −3x^2 +1)/(x^2 (x^2 −1)^2 ))  x^6 −3x^4 −3x^2 +1=0  x=(√y)  y^3 −3y^2 −3y+1=0  y=z+1  z^3 −6z−4=0  trying factors of −4 we find  z_1 =−2 ⇒ y_1 =−1 ⇒ x_1 =±i  (z+2)(z^2 −2z−2)=0  z_2 =1−(√3) ⇒ y_2 =2−(√3) ⇒ x_2 =±(((√6)/2)−((√2)/2))  z_3 =1+(√3) ⇒ y_3 =2+(√3) ⇒ x_3 =±(((√6)/2)+((√2)/2))  f′′(x)=((2(x^6 +9x^4 −3x^2 +1))/(x^3 (x^2 −1)^3 ))  f′′(−((√6)/2)−((√2)/2))<0  f′′(−((√6)/2)+((√2)/2))>0 ⇒ min; f(x)=2(√2)  f′′(((√6)/2)−((√2)/2))<0  f′′(((√6)/2)+((√2)/2))>0 ⇒ min ⇒ f(x)=2(√2)

$${f}\left({x}\right)=\frac{{x}^{\mathrm{4}} +\mathrm{1}}{{x}\left({x}^{\mathrm{2}} −\mathrm{1}\right)} \\ $$$${f}'\left({x}\right)=\frac{{x}^{\mathrm{6}} −\mathrm{3}{x}^{\mathrm{4}} −\mathrm{3}{x}^{\mathrm{2}} +\mathrm{1}}{{x}^{\mathrm{2}} \left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${x}^{\mathrm{6}} −\mathrm{3}{x}^{\mathrm{4}} −\mathrm{3}{x}^{\mathrm{2}} +\mathrm{1}=\mathrm{0} \\ $$$${x}=\sqrt{{y}} \\ $$$${y}^{\mathrm{3}} −\mathrm{3}{y}^{\mathrm{2}} −\mathrm{3}{y}+\mathrm{1}=\mathrm{0} \\ $$$${y}={z}+\mathrm{1} \\ $$$${z}^{\mathrm{3}} −\mathrm{6}{z}−\mathrm{4}=\mathrm{0} \\ $$$$\mathrm{trying}\:\mathrm{factors}\:\mathrm{of}\:−\mathrm{4}\:\mathrm{we}\:\mathrm{find} \\ $$$${z}_{\mathrm{1}} =−\mathrm{2}\:\Rightarrow\:{y}_{\mathrm{1}} =−\mathrm{1}\:\Rightarrow\:{x}_{\mathrm{1}} =\pm\mathrm{i} \\ $$$$\left({z}+\mathrm{2}\right)\left({z}^{\mathrm{2}} −\mathrm{2}{z}−\mathrm{2}\right)=\mathrm{0} \\ $$$${z}_{\mathrm{2}} =\mathrm{1}−\sqrt{\mathrm{3}}\:\Rightarrow\:{y}_{\mathrm{2}} =\mathrm{2}−\sqrt{\mathrm{3}}\:\Rightarrow\:{x}_{\mathrm{2}} =\pm\left(\frac{\sqrt{\mathrm{6}}}{\mathrm{2}}−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right) \\ $$$${z}_{\mathrm{3}} =\mathrm{1}+\sqrt{\mathrm{3}}\:\Rightarrow\:{y}_{\mathrm{3}} =\mathrm{2}+\sqrt{\mathrm{3}}\:\Rightarrow\:{x}_{\mathrm{3}} =\pm\left(\frac{\sqrt{\mathrm{6}}}{\mathrm{2}}+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right) \\ $$$${f}''\left({x}\right)=\frac{\mathrm{2}\left({x}^{\mathrm{6}} +\mathrm{9}{x}^{\mathrm{4}} −\mathrm{3}{x}^{\mathrm{2}} +\mathrm{1}\right)}{{x}^{\mathrm{3}} \left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{3}} } \\ $$$${f}''\left(−\frac{\sqrt{\mathrm{6}}}{\mathrm{2}}−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right)<\mathrm{0} \\ $$$${f}''\left(−\frac{\sqrt{\mathrm{6}}}{\mathrm{2}}+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right)>\mathrm{0}\:\Rightarrow\:\mathrm{min};\:{f}\left({x}\right)=\mathrm{2}\sqrt{\mathrm{2}} \\ $$$${f}''\left(\frac{\sqrt{\mathrm{6}}}{\mathrm{2}}−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right)<\mathrm{0} \\ $$$${f}''\left(\frac{\sqrt{\mathrm{6}}}{\mathrm{2}}+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right)>\mathrm{0}\:\Rightarrow\:\mathrm{min}\:\Rightarrow\:{f}\left({x}\right)=\mathrm{2}\sqrt{\mathrm{2}} \\ $$

Commented by rahul 19 last updated on 30/Mar/19

thank you sir!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com