Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 55415 by Tawa1 last updated on 23/Feb/19

a, b, d  are gp. such that  a, b, c are real.  if    a + b + c  =  26   and  a^2  + b^2  + c^2   =  364,     find  b  ?

$$\mathrm{a},\:\mathrm{b},\:\mathrm{d}\:\:\mathrm{are}\:\mathrm{gp}.\:\mathrm{such}\:\mathrm{that}\:\:\mathrm{a},\:\mathrm{b},\:\mathrm{c}\:\mathrm{are}\:\mathrm{real}.\:\:\mathrm{if}\:\: \\ $$$$\mathrm{a}\:+\:\mathrm{b}\:+\:\mathrm{c}\:\:=\:\:\mathrm{26}\:\:\:\mathrm{and}\:\:\mathrm{a}^{\mathrm{2}} \:+\:\mathrm{b}^{\mathrm{2}} \:+\:\mathrm{c}^{\mathrm{2}} \:\:=\:\:\mathrm{364},\:\:\:\:\:\mathrm{find}\:\:\mathrm{b}\:\:? \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 23/Feb/19

a=a  b=ar  c=ar^2   a+ar+ar^2 =26→a(1+r+r^2 )=26  a^2 +a^2 r^2 +a^2 r^4 =364→a^2 (1+r^2 +r^4 )=364  r^4 +r^2 +1  r^4 +2r^2 +1−r^2   (r^2 +1)^2 −(r)^2   (r^2 +r+1)(r^2 −r+1)  a^2 (r^2 +r+1)(r^2 −r+1)=364  now  a(r^2 −r+1)=((364)/(26))=14  ((a(r^2 +r+1))/(a(r^2 −r+1)))=((26)/(14))  13r^2 −13r+13=7r^2 +7r+7  6r^2 −20r+6=0  3r^2 −10r+3=0  3r^2 −9r−r+3=0  3r(r−3)−1(r−3)=0  (r−3)(3r−1)=0  so r=3 or (1/3)  a(r^2 +r+1)=26  a(9+3+1)=26  a=2  so  b=2×3=6  a((1/9)+(1/3)+1)=26  a(((1+3+9)/9))=26  a=((26×9)/(13))=18  so b=ar=18×(1/3)=6

$${a}={a} \\ $$$${b}={ar} \\ $$$${c}={ar}^{\mathrm{2}} \\ $$$${a}+{ar}+{ar}^{\mathrm{2}} =\mathrm{26}\rightarrow{a}\left(\mathrm{1}+{r}+{r}^{\mathrm{2}} \right)=\mathrm{26} \\ $$$${a}^{\mathrm{2}} +{a}^{\mathrm{2}} {r}^{\mathrm{2}} +{a}^{\mathrm{2}} {r}^{\mathrm{4}} =\mathrm{364}\rightarrow{a}^{\mathrm{2}} \left(\mathrm{1}+{r}^{\mathrm{2}} +{r}^{\mathrm{4}} \right)=\mathrm{364} \\ $$$${r}^{\mathrm{4}} +{r}^{\mathrm{2}} +\mathrm{1} \\ $$$${r}^{\mathrm{4}} +\mathrm{2}{r}^{\mathrm{2}} +\mathrm{1}−{r}^{\mathrm{2}} \\ $$$$\left({r}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} −\left({r}\right)^{\mathrm{2}} \\ $$$$\left({r}^{\mathrm{2}} +{r}+\mathrm{1}\right)\left({r}^{\mathrm{2}} −{r}+\mathrm{1}\right) \\ $$$${a}^{\mathrm{2}} \left({r}^{\mathrm{2}} +{r}+\mathrm{1}\right)\left({r}^{\mathrm{2}} −{r}+\mathrm{1}\right)=\mathrm{364} \\ $$$${now} \\ $$$${a}\left({r}^{\mathrm{2}} −{r}+\mathrm{1}\right)=\frac{\mathrm{364}}{\mathrm{26}}=\mathrm{14} \\ $$$$\frac{{a}\left({r}^{\mathrm{2}} +{r}+\mathrm{1}\right)}{{a}\left({r}^{\mathrm{2}} −{r}+\mathrm{1}\right)}=\frac{\mathrm{26}}{\mathrm{14}} \\ $$$$\mathrm{13}{r}^{\mathrm{2}} −\mathrm{13}{r}+\mathrm{13}=\mathrm{7}{r}^{\mathrm{2}} +\mathrm{7}{r}+\mathrm{7} \\ $$$$\mathrm{6}{r}^{\mathrm{2}} −\mathrm{20}{r}+\mathrm{6}=\mathrm{0} \\ $$$$\mathrm{3}{r}^{\mathrm{2}} −\mathrm{10}{r}+\mathrm{3}=\mathrm{0} \\ $$$$\mathrm{3}{r}^{\mathrm{2}} −\mathrm{9}{r}−{r}+\mathrm{3}=\mathrm{0} \\ $$$$\mathrm{3}{r}\left({r}−\mathrm{3}\right)−\mathrm{1}\left({r}−\mathrm{3}\right)=\mathrm{0} \\ $$$$\left({r}−\mathrm{3}\right)\left(\mathrm{3}{r}−\mathrm{1}\right)=\mathrm{0} \\ $$$${so}\:{r}=\mathrm{3}\:{or}\:\frac{\mathrm{1}}{\mathrm{3}} \\ $$$${a}\left({r}^{\mathrm{2}} +{r}+\mathrm{1}\right)=\mathrm{26} \\ $$$${a}\left(\mathrm{9}+\mathrm{3}+\mathrm{1}\right)=\mathrm{26} \\ $$$${a}=\mathrm{2}\:\:{so} \\ $$$${b}=\mathrm{2}×\mathrm{3}=\mathrm{6} \\ $$$${a}\left(\frac{\mathrm{1}}{\mathrm{9}}+\frac{\mathrm{1}}{\mathrm{3}}+\mathrm{1}\right)=\mathrm{26} \\ $$$${a}\left(\frac{\mathrm{1}+\mathrm{3}+\mathrm{9}}{\mathrm{9}}\right)=\mathrm{26} \\ $$$${a}=\frac{\mathrm{26}×\mathrm{9}}{\mathrm{13}}=\mathrm{18} \\ $$$${so}\:{b}={ar}=\mathrm{18}×\frac{\mathrm{1}}{\mathrm{3}}=\mathrm{6} \\ $$

Commented by Tawa1 last updated on 23/Feb/19

God bless you sir. I appreciate your effort

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate}\:\mathrm{your}\:\mathrm{effort} \\ $$

Answered by peter frank last updated on 24/Feb/19

(b/a)=(c/b)  b^2 =ac  a^2 +b^2 +c^2 =364  a+b+c=26  a+c=26−b  (a+c)^2 −2ac+b^2 =364  b^2 =ac  (a+c)^2 −2(b)^2 +b^2 =364  (a+c)^2 −b^2 =364  (a+c+b)(a+c−b)=364  (26−b+b)(26−b−b)=364  26(26−2b)=364  b=6

$$\frac{\mathrm{b}}{\mathrm{a}}=\frac{\mathrm{c}}{\mathrm{b}} \\ $$$$\mathrm{b}^{\mathrm{2}} =\mathrm{ac} \\ $$$$\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} =\mathrm{364} \\ $$$$\mathrm{a}+\mathrm{b}+\mathrm{c}=\mathrm{26} \\ $$$$\mathrm{a}+\mathrm{c}=\mathrm{26}−\mathrm{b} \\ $$$$\left(\mathrm{a}+\mathrm{c}\right)^{\mathrm{2}} −\mathrm{2ac}+\mathrm{b}^{\mathrm{2}} =\mathrm{364} \\ $$$$\mathrm{b}^{\mathrm{2}} =\mathrm{ac} \\ $$$$\left(\mathrm{a}+\mathrm{c}\right)^{\mathrm{2}} −\mathrm{2}\left(\mathrm{b}\right)^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} =\mathrm{364} \\ $$$$\left(\mathrm{a}+\mathrm{c}\right)^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} =\mathrm{364} \\ $$$$\left(\mathrm{a}+\mathrm{c}+\mathrm{b}\right)\left(\mathrm{a}+\mathrm{c}−\mathrm{b}\right)=\mathrm{364} \\ $$$$\left(\mathrm{26}−\mathrm{b}+\mathrm{b}\right)\left(\mathrm{26}−\mathrm{b}−\mathrm{b}\right)=\mathrm{364} \\ $$$$\mathrm{26}\left(\mathrm{26}−\mathrm{2b}\right)=\mathrm{364} \\ $$$$\mathrm{b}=\mathrm{6} \\ $$$$ \\ $$

Commented by Tawa1 last updated on 24/Feb/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com