Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 55359 by gunawan last updated on 22/Feb/19

Find a formula for the general   term of the squence  1, 2, 2, 3, 3, 3, 4, 4, 4,4, ...

$$\mathrm{Find}\:\mathrm{a}\:\mathrm{formula}\:\mathrm{for}\:\mathrm{the}\:\mathrm{general}\: \\ $$$$\mathrm{term}\:\mathrm{of}\:\mathrm{the}\:\mathrm{squence} \\ $$$$\mathrm{1},\:\mathrm{2},\:\mathrm{2},\:\mathrm{3},\:\mathrm{3},\:\mathrm{3},\:\mathrm{4},\:\mathrm{4},\:\mathrm{4},\mathrm{4},\:... \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 22/Feb/19

1→               nos of term→1  (2,2)→         do →                  2  (3,3,3) →   do→                   3  (4,4,4,4)→ do →                  4  ...              ...  (n,n,n,...n)→ do→            n  now  1,2,2,3,3,3,4,4,4,4.....n,n,n....n  total nos of term of this series  s=1+2+3+4+..+n  s=(n/2)[2×1+(n−1)×1]→((n^2 +n)/2)  example  let to find 19th term of the sequence  put n=5     in  ((n^2 +n)/2)→ ((5^2 +5)/2)=15  put n=6    in ((n^2 +n)/2) →((6^2 +6)/2)=21        21>19>15  so  T_(19) =6  T_(100)   100th term...  i)chose n such that ((n^2 +n)/2) nearest  to 100  ((14^2 +14)/2)=105      ((13^2 +13)/2)=91    ((15^2 +15)/2)=120  1,(2,2),(3,3,3),(4,4,4,4),...,(13,13,..13)  if we count nos of terms  it is 91  1,(2,2),(3,3,3),(4,4,4,4)...(14,14,14,..14)  if we count nos of terms =91+14=105  so T_(100) =14  so T_r =n  [n=+ve integer when ((n^2 +n)/2)=r]  T_r =n+1  [when   (((n+1)^2 +n)/2)> r>((n^2 +n)/2)]  example  find T_(19)  and T_(100)  using above formulla  step...1)put n=1,2,3...so that ((n^2 +n)/2) approaches to 19  ((4^2 +4)/2)=10  ((5^2 +5)/2)=15 ←look here  ((6^2 +6)/2)=21  now look 19>15  when n=5  that means  1,2,2,3,3,3...5,5,5,5,5  ←total 15 terms  1,2,2,3,3,3....5,5,5,5,5,6,6,6,6_↑_(19th term)  ,6,6←21 terms  pls check...

$$\mathrm{1}\rightarrow\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{nos}\:{of}\:{term}\rightarrow\mathrm{1} \\ $$$$\left(\mathrm{2},\mathrm{2}\right)\rightarrow\:\:\:\:\:\:\:\:\:{do}\:\rightarrow\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2} \\ $$$$\left(\mathrm{3},\mathrm{3},\mathrm{3}\right)\:\rightarrow\:\:\:{do}\rightarrow\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{3} \\ $$$$\left(\mathrm{4},\mathrm{4},\mathrm{4},\mathrm{4}\right)\rightarrow\:{do}\:\rightarrow\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{4} \\ $$$$...\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$... \\ $$$$\left({n},{n},{n},...{n}\right)\rightarrow\:{do}\rightarrow\:\:\:\:\:\:\:\:\:\:\:\:{n} \\ $$$${now} \\ $$$$\mathrm{1},\mathrm{2},\mathrm{2},\mathrm{3},\mathrm{3},\mathrm{3},\mathrm{4},\mathrm{4},\mathrm{4},\mathrm{4}.....{n},{n},{n}....{n} \\ $$$${total}\:{nos}\:{of}\:{term}\:{of}\:{this}\:{series} \\ $$$${s}=\mathrm{1}+\mathrm{2}+\mathrm{3}+\mathrm{4}+..+{n} \\ $$$${s}=\frac{{n}}{\mathrm{2}}\left[\mathrm{2}×\mathrm{1}+\left({n}−\mathrm{1}\right)×\mathrm{1}\right]\rightarrow\frac{{n}^{\mathrm{2}} +{n}}{\mathrm{2}} \\ $$$${example} \\ $$$${let}\:{to}\:{find}\:\mathrm{19}{th}\:{term}\:{of}\:{the}\:{sequence} \\ $$$${put}\:{n}=\mathrm{5}\:\:\:\:\:{in}\:\:\frac{{n}^{\mathrm{2}} +{n}}{\mathrm{2}}\rightarrow\:\frac{\mathrm{5}^{\mathrm{2}} +\mathrm{5}}{\mathrm{2}}=\mathrm{15} \\ $$$${put}\:{n}=\mathrm{6}\:\:\:\:{in}\:\frac{{n}^{\mathrm{2}} +{n}}{\mathrm{2}}\:\rightarrow\frac{\mathrm{6}^{\mathrm{2}} +\mathrm{6}}{\mathrm{2}}=\mathrm{21} \\ $$$$\:\:\:\:\:\:\mathrm{21}>\mathrm{19}>\mathrm{15}\:\:{so}\:\:{T}_{\mathrm{19}} =\mathrm{6} \\ $$$${T}_{\mathrm{100}} \:\:\mathrm{100}{th}\:{term}... \\ $$$$\left.{i}\right){chose}\:{n}\:{such}\:{that}\:\frac{{n}^{\mathrm{2}} +{n}}{\mathrm{2}}\:{nearest}\:\:{to}\:\mathrm{100} \\ $$$$\frac{\mathrm{14}^{\mathrm{2}} +\mathrm{14}}{\mathrm{2}}=\mathrm{105}\:\:\:\:\:\:\frac{\mathrm{13}^{\mathrm{2}} +\mathrm{13}}{\mathrm{2}}=\mathrm{91}\:\:\:\:\frac{\mathrm{15}^{\mathrm{2}} +\mathrm{15}}{\mathrm{2}}=\mathrm{120} \\ $$$$\mathrm{1},\left(\mathrm{2},\mathrm{2}\right),\left(\mathrm{3},\mathrm{3},\mathrm{3}\right),\left(\mathrm{4},\mathrm{4},\mathrm{4},\mathrm{4}\right),...,\left(\mathrm{13},\mathrm{13},..\mathrm{13}\right) \\ $$$${if}\:{we}\:{count}\:{nos}\:{of}\:{terms}\:\:{it}\:{is}\:\mathrm{91} \\ $$$$\mathrm{1},\left(\mathrm{2},\mathrm{2}\right),\left(\mathrm{3},\mathrm{3},\mathrm{3}\right),\left(\mathrm{4},\mathrm{4},\mathrm{4},\mathrm{4}\right)...\left(\mathrm{14},\mathrm{14},\mathrm{14},..\mathrm{14}\right) \\ $$$${if}\:{we}\:{count}\:{nos}\:{of}\:{terms}\:=\mathrm{91}+\mathrm{14}=\mathrm{105} \\ $$$${so}\:{T}_{\mathrm{100}} =\mathrm{14} \\ $$$$\boldsymbol{{so}}\:\boldsymbol{{T}}_{\boldsymbol{{r}}} =\boldsymbol{{n}}\:\:\left[\boldsymbol{{n}}=+\boldsymbol{{ve}}\:\boldsymbol{{integer}}\:\boldsymbol{{when}}\:\frac{\boldsymbol{{n}}^{\mathrm{2}} +\boldsymbol{{n}}}{\mathrm{2}}=\boldsymbol{{r}}\right] \\ $$$$\boldsymbol{{T}}_{{r}} =\boldsymbol{{n}}+\mathrm{1}\:\:\left[\boldsymbol{{when}}\:\:\:\frac{\left(\boldsymbol{{n}}+\mathrm{1}\right)^{\mathrm{2}} +\boldsymbol{{n}}}{\mathrm{2}}>\:\boldsymbol{{r}}>\frac{\boldsymbol{{n}}^{\mathrm{2}} +\boldsymbol{{n}}}{\mathrm{2}}\right] \\ $$$$\boldsymbol{{example}}\:\:{find}\:\boldsymbol{{T}}_{\mathrm{19}} \:{and}\:{T}_{\mathrm{100}} \:{using}\:{above}\:{formulla} \\ $$$$\left.{step}...\mathrm{1}\right){put}\:{n}=\mathrm{1},\mathrm{2},\mathrm{3}...{so}\:{that}\:\frac{{n}^{\mathrm{2}} +{n}}{\mathrm{2}}\:{approaches}\:{to}\:\mathrm{19} \\ $$$$\frac{\mathrm{4}^{\mathrm{2}} +\mathrm{4}}{\mathrm{2}}=\mathrm{10} \\ $$$$\frac{\mathrm{5}^{\mathrm{2}} +\mathrm{5}}{\mathrm{2}}=\mathrm{15}\:\leftarrow{look}\:{here} \\ $$$$\frac{\mathrm{6}^{\mathrm{2}} +\mathrm{6}}{\mathrm{2}}=\mathrm{21} \\ $$$$\boldsymbol{{now}}\:\boldsymbol{{look}}\:\mathrm{19}>\mathrm{15}\:\:\boldsymbol{{when}}\:\boldsymbol{{n}}=\mathrm{5} \\ $$$${that}\:{means} \\ $$$$\mathrm{1},\mathrm{2},\mathrm{2},\mathrm{3},\mathrm{3},\mathrm{3}...\mathrm{5},\mathrm{5},\mathrm{5},\mathrm{5},\mathrm{5}\:\:\leftarrow{total}\:\mathrm{15}\:{terms} \\ $$$$\mathrm{1},\mathrm{2},\mathrm{2},\mathrm{3},\mathrm{3},\mathrm{3}....\mathrm{5},\mathrm{5},\mathrm{5},\mathrm{5},\mathrm{5},\mathrm{6},\mathrm{6},\mathrm{6},\underset{\underset{\mathrm{19}{th}\:{term}} {\uparrow}} {\mathrm{6}},\mathrm{6},\mathrm{6}\leftarrow\mathrm{21}\:{terms} \\ $$$${pls}\:{check}... \\ $$

Commented by gunawan last updated on 22/Feb/19

thank you Sir  I really appreciate

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{Sir} \\ $$$$\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com