Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 53966 by maxmathsup by imad last updated on 27/Jan/19

let f(x) =xsinx ,2π periodic even  developp f at Fourier serie .

$${let}\:{f}\left({x}\right)\:={xsinx}\:,\mathrm{2}\pi\:{periodic}\:{even} \\ $$$${developp}\:{f}\:{at}\:{Fourier}\:{serie}\:. \\ $$

Commented by maxmathsup by imad last updated on 30/Jan/19

f(x)=(a_0 /2) +Σ_(n=1) ^∞  a_n cos(nx)  and a_n =(2/T) ∫_([T])   f(x) cos(nx)dx  =(2/(2π)) ∫_(−π) ^π  xsin(x) cos(nx)dx =(2/π) ∫_0 ^π  x sin(x)cos(nx) dx  but  sin(a+b) =sina cosb +cosa sinb   sin(a−b)=sina cosb −cosa sinb ⇒sina cosb=(1/2){sin(a+b)+sin(a−b)} ⇒  (π/2) a_n =(1/2) ∫_0 ^π  x{sin(n+1)x−sin(n−1)x}dx ⇒  π a_n =∫_0 ^π x sin(n+1)x dx −∫_0 ^π  x sin(n−1)xdx let find  I=∫_0 ^π  x sin(αx)dx  by parts I =[−(x/α)cos(αx)]_0 ^π  −∫_0 ^π  −(1/α) cos(αx)dx  =−(1/α)[ xcos(αx)]_0 ^π   +(1/α)[(1/α)sin(αx)]_0 ^π  =−(π/α) cos(πα) +(1/α^2 ) sin(απ) ⇒  πa_n =−(π/(n+1))(−1)^(n+1)  −(−(π/(n−1))(−1)^(n−1) ) =((π(−1)^n )/(n+1)) −((π(−1)^n )/(n−1))  =π(−1)^n {(1/(n+1)) −(1/(n−1))} =((−2π(−1)^n )/(n^2 −1)) =((2π(−1)^(n−1) )/(n^2 −1))  with n≥2  a_0 =(2/π) ∫_0 ^π  xsin(x)dx =(2/π){π}=2 ⇒(a_0 /2) =1  (π/2) a_1 =∫_0 ^π  xsin(2x)dx =−(π/2) ⇒a_1 =−1 ⇒   xsin(x) =2Σ_(n=2) ^∞   (((−1)^(n−1) )/(n^2 −1)) cos(nx).

$${f}\left({x}\right)=\frac{{a}_{\mathrm{0}} }{\mathrm{2}}\:+\sum_{{n}=\mathrm{1}} ^{\infty} \:{a}_{{n}} {cos}\left({nx}\right)\:\:{and}\:{a}_{{n}} =\frac{\mathrm{2}}{{T}}\:\int_{\left[{T}\right]} \:\:{f}\left({x}\right)\:{cos}\left({nx}\right){dx} \\ $$$$=\frac{\mathrm{2}}{\mathrm{2}\pi}\:\int_{−\pi} ^{\pi} \:{xsin}\left({x}\right)\:{cos}\left({nx}\right){dx}\:=\frac{\mathrm{2}}{\pi}\:\int_{\mathrm{0}} ^{\pi} \:{x}\:{sin}\left({x}\right){cos}\left({nx}\right)\:{dx}\:\:{but} \\ $$$${sin}\left({a}+{b}\right)\:={sina}\:{cosb}\:+{cosa}\:{sinb}\: \\ $$$${sin}\left({a}−{b}\right)={sina}\:{cosb}\:−{cosa}\:{sinb}\:\Rightarrow{sina}\:{cosb}=\frac{\mathrm{1}}{\mathrm{2}}\left\{{sin}\left({a}+{b}\right)+{sin}\left({a}−{b}\right)\right\}\:\Rightarrow \\ $$$$\frac{\pi}{\mathrm{2}}\:{a}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\pi} \:{x}\left\{{sin}\left({n}+\mathrm{1}\right){x}−{sin}\left({n}−\mathrm{1}\right){x}\right\}{dx}\:\Rightarrow \\ $$$$\pi\:{a}_{{n}} =\int_{\mathrm{0}} ^{\pi} {x}\:{sin}\left({n}+\mathrm{1}\right){x}\:{dx}\:−\int_{\mathrm{0}} ^{\pi} \:{x}\:{sin}\left({n}−\mathrm{1}\right){xdx}\:{let}\:{find} \\ $$$${I}=\int_{\mathrm{0}} ^{\pi} \:{x}\:{sin}\left(\alpha{x}\right){dx}\:\:{by}\:{parts}\:{I}\:=\left[−\frac{{x}}{\alpha}{cos}\left(\alpha{x}\right)\right]_{\mathrm{0}} ^{\pi} \:−\int_{\mathrm{0}} ^{\pi} \:−\frac{\mathrm{1}}{\alpha}\:{cos}\left(\alpha{x}\right){dx} \\ $$$$=−\frac{\mathrm{1}}{\alpha}\left[\:{xcos}\left(\alpha{x}\right)\right]_{\mathrm{0}} ^{\pi} \:\:+\frac{\mathrm{1}}{\alpha}\left[\frac{\mathrm{1}}{\alpha}{sin}\left(\alpha{x}\right)\right]_{\mathrm{0}} ^{\pi} \:=−\frac{\pi}{\alpha}\:{cos}\left(\pi\alpha\right)\:+\frac{\mathrm{1}}{\alpha^{\mathrm{2}} }\:{sin}\left(\alpha\pi\right)\:\Rightarrow \\ $$$$\pi{a}_{{n}} =−\frac{\pi}{{n}+\mathrm{1}}\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \:−\left(−\frac{\pi}{{n}−\mathrm{1}}\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \right)\:=\frac{\pi\left(−\mathrm{1}\right)^{{n}} }{{n}+\mathrm{1}}\:−\frac{\pi\left(−\mathrm{1}\right)^{{n}} }{{n}−\mathrm{1}} \\ $$$$=\pi\left(−\mathrm{1}\right)^{{n}} \left\{\frac{\mathrm{1}}{{n}+\mathrm{1}}\:−\frac{\mathrm{1}}{{n}−\mathrm{1}}\right\}\:=\frac{−\mathrm{2}\pi\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{2}} −\mathrm{1}}\:=\frac{\mathrm{2}\pi\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}^{\mathrm{2}} −\mathrm{1}}\:\:{with}\:{n}\geqslant\mathrm{2} \\ $$$${a}_{\mathrm{0}} =\frac{\mathrm{2}}{\pi}\:\int_{\mathrm{0}} ^{\pi} \:{xsin}\left({x}\right){dx}\:=\frac{\mathrm{2}}{\pi}\left\{\pi\right\}=\mathrm{2}\:\Rightarrow\frac{{a}_{\mathrm{0}} }{\mathrm{2}}\:=\mathrm{1} \\ $$$$\frac{\pi}{\mathrm{2}}\:{a}_{\mathrm{1}} =\int_{\mathrm{0}} ^{\pi} \:{xsin}\left(\mathrm{2}{x}\right){dx}\:=−\frac{\pi}{\mathrm{2}}\:\Rightarrow{a}_{\mathrm{1}} =−\mathrm{1}\:\Rightarrow\: \\ $$$${xsin}\left({x}\right)\:=\mathrm{2}\sum_{{n}=\mathrm{2}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}^{\mathrm{2}} −\mathrm{1}}\:{cos}\left({nx}\right). \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com